上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (6): 720-731.doi: 10.16183/j.cnki.jsjtu.2024.224

• 新型电力系统与综合能源 • 上一篇    下一篇

微电网功率预测与调度端到端协同优化方法

张理1, 王宝1, 贾健雄1, 宋竹萌1, 叶钰童1, 余跃1, 林嘉庆2, 徐潇源2()   

  1. 1.国网安徽省电力有限公司经济技术研究院,合肥 230000
    2.上海交通大学 电力传输与功率变换控制教育部重点实验室,上海 200240
  • 收稿日期:2024-06-13 接受日期:2024-10-28 出版日期:2025-06-28 发布日期:2025-07-04
  • 通讯作者: 徐潇源 E-mail:xuxiaoyuan@sjtu.edu.cn
  • 作者简介:张 理(1989—),副高级工程师,从事电力系统调度与控制工作.

End-to-End Collaborative Optimization Method for Microgrid Power Prediction and Optimal Scheduling

ZHANG Li1, WANG Bao1, JIA Jianxiong1, SONG Zhumeng1, YE Yutong1, YU Yue1, LIN Jiaqing2, XU Xiaoyuan2()   

  1. 1. Economic and Technological Research Institute, State Grid Anhui Electric Power Co., Ltd., Hefei 230000, China
    2. Key Laboratory of Control of Power Transmission and Conversion of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2024-06-13 Accepted:2024-10-28 Online:2025-06-28 Published:2025-07-04
  • Contact: XU Xiaoyuan E-mail:xuxiaoyuan@sjtu.edu.cn

摘要:

作为消纳新能源的有效方式之一,微电网是新型电力系统的重要组成部分.以高比例新能源注入的微电网为背景,针对新能源功率预测和微电网优化调度目标不一致的问题,建立以微电网运行效益最高为目标的功率组合预测与微电网日前、日内调度端到端优化模型,并提出求解优化问题的方法.首先,构建双层优化问题,上层为功率预测模型训练,设计为组合预测问题;下层为微电网运行成本最小,其运行成本优化结果设为上层组合权重优化问题的损失函数.然后,利用启发式算法迭代求解上下层问题,获得使运行成本最低的预测结果和调度方案.最后,在由IEEE 33节点和IEEE 123节点系统扩展的微电网中接入真实的新能源数据,验证了该方法对提升微电网运行效益的有效性.

关键词: 微电网调度, 新能源预测, 组合预测, 端到端优化

Abstract:

Microgrids, as one of the effective methods for integrating new energy sources, play a crucial role in the new-type power systems. In microgrids with high renewable energy penetration, the objectives of renewable energy power forecasting and microgrid optimal scheduling may be misaligned. To address this issue, this study proposes an end-to-end optimization model which combines power forecasting with day-ahead and intraday scheduling to maximize the operational benefits of the microgrid. It also provides a corresponding solution method. Initially, a bi-level optimization framework is established. The upper level focuses on training the power forecasting model, formulated as a combined forecasting problem, while the lower level aims to minimize microgrid operational costs. The result of the lower-level optimization is used as the loss function to optimize the forecasting weights in the upper level. Subsequently, a heuristic algorithm iteratively is employed to solve the upper and lower level problems, thereby obtaining forecasting results and scheduling schemes which minimize the operational costs. Finally, the effectiveness of the proposed method in enhancing microgrid operational benefits is validated by integrating real renewable energy data into a typical microgrid extended from the IEEE 33-node and IEEE 123-node systems.

Key words: microgrid scheduling, new energy prediction, composite forecasting, end-to-end optimization

中图分类号: