上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (11): 1724-1734.doi: 10.16183/j.cnki.jsjtu.2023.020
收稿日期:
2023-01-18
修回日期:
2023-03-11
接受日期:
2023-03-14
出版日期:
2024-11-28
发布日期:
2024-12-02
通讯作者:
叶冠林,教授,博士生导师;E-mail:作者简介:
何 文(1998—),硕士生,从事岩溶勘探物探研究.
基金资助:
HE Wen1, GAO Bin1, WANG Qiangqiang2, FENG Shaokong1, YE Guanlin1()
Received:
2023-01-18
Revised:
2023-03-11
Accepted:
2023-03-14
Online:
2024-11-28
Published:
2024-12-02
摘要:
综合物探是一种有效的岩溶勘探技术,但其预测结果中存在人为影响大、溶洞边界模糊等缺点.首先,基于机器学习技术,采用高斯混合模型,分别对高密度电法和面波法勘探数据做分类处理;然后,提出Category-boundary算法,进一步细分上述分类得到的边界,提高高斯混合模型分类精度;最后,根据专家经验与地勘资料制定分类融合规则,在勘察数据驱动和工程地质知识引导的有机结合下,形成一套综合物探的高精度分类融合新方法.将新方法应用于浙南某岩溶勘探工程,获得了边界清晰的溶洞探测结果,与实际钻孔信息对比高度吻合,验证了新方法的有效性.
中图分类号:
何文, 高斌, 王强强, 冯少孔, 叶冠林. 基于高斯混合聚类的综合物探方法及其在岩溶勘探中的应用[J]. 上海交通大学学报, 2024, 58(11): 1724-1734.
HE Wen, GAO Bin, WANG Qiangqiang, FENG Shaokong, YE Guanlin. A Comprehensive Geophysical Prospection Method Based on Gaussian Mixture Clustering and its Application in Karst Exploration[J]. Journal of Shanghai Jiao Tong University, 2024, 58(11): 1724-1734.
[1] | FORD D, WILLIAMS P W. Karst hydrogeology and geomorphology[M]. Chichester, England: John Wiley & Sons, 2007. |
[2] | 黄毓铭, 张晓峰, 谢尚平, 等. 综合物探方法在南宁地铁溶洞探测中的应用[J]. 地球物理学进展, 2017, 32(3): 1352-1359. |
HUANG Yuming, ZHANG Xiaofeng, XIE Shangping, et al. Application of integrated geophysical method to Karst cave exploration of metro engineering in Nanning[J]. Progress in Geophysics, 2017, 32(3): 1352-1359. | |
[3] | 雷旭友, 李正文, 折京平. 超高密度电阻率法在土洞、煤窑采空区和岩溶勘探中应用研究[J]. 地球物理学进展, 2009, 24(1): 340-347. |
LEI Xuyou, LI Zhengwen, ZHE Jingping. Applications and research of the high resolution resistivity method in explovation of caves, mined regions and Karst region[J]. Progress in Geophysics, 2009, 24(1): 340-347. | |
[4] | 何禹, 李永涛, 朱亚军. 钻孔电磁波CT技术在深部岩溶勘探中的应用[J]. 工程地球物理学报, 2010, 7(4): 451-455. |
HE Yu, LI Yongtao, ZHU Yajun. Application of drilling electromagnetic CT to deep cavern and fracture prospecting[J]. Chinese Journal of Engineering Geophysics, 2010, 7(4): 451-455. | |
[5] | 柴明锐, 程丹, 张昌民, 等. 机器学习方法对砂砾岩岩屑成分的预测: 以西北缘X723井百口泉组为例[J]. 西安石油大学学报(自然科学版), 2017, 32(5): 22-28. |
CHAI Mingrui, CHENG Dan, ZHANG Changmin, et al. Prediction of debris composition in glutenite by machine learning method: A case study in baikouquan formation of well X723 in the NW margin of Junggar Basin[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2017, 32(5): 22-28. | |
[6] | LIU M Y, YANG J, ZHENG W, et al. Using novel complex-efficient FastICA blind deconvolution method for urban water pipe leak localization in the presence of branch noise[J]. Journal of Water Resources Planning and Management, 2021, 147(10): 04021072. |
[7] | 干磊, 何东博, 郭建林, 等. 机器学习方法在储层分类中的应用[J]. 数学的实践与认识, 2019, 49(13): 138-144. |
GAN Lei, HE Dongbo, GUO Jianlin, et al. Application of machine learning method in reservoir classification[J]. Mathematics in Practice and Theory, 2019, 49(13): 138-144. | |
[8] | CHOU J S, TSAI C F, PHAM A D, et al. Machine learning in concrete strength simulations: Multi-nation data analytics[J]. Construction and Building Materials, 2014, 73: 771-780. |
[9] | GUI G Q, PAN H, LIN Z B, et al. Data-driven support vector machine with optimization techniques for structural health monitoring and damage detection[J]. KSCE Journal of Civil Engineering, 2017, 21(2): 523-534. |
[10] | AZIMI M, ESLAMLOU A D, PEKCAN G. Data-driven structural health monitoring and damage detection through deep learning: State-of-the-art review[J]. Sensors (Basel, Switzerland), 2020, 20(10): 2778. |
[11] | PATHIRAGE C S N, LI J, LI L, et al. Structural damage identification based on autoencoder neural networks and deep learning[J]. Engineering Structures, 2018, 172: 13-28. |
[12] | 周永章, 陈烁, 张旗, 等. 大数据与数学地球科学研究进展: 大数据与数学地球科学专题代序[J]. 岩石学报, 2018, 34(2): 255-263. |
ZHOU Yongzhang, CHEN Shuo, ZHANG Qi, et al. Advances and prospects of big data and mathematical geoscience[J]. Acta Petrologica Sinica, 2018, 34(2): 255-263. | |
[13] | KUANG L C, LIU H, REN Y L, et al. Application and development trend of artificial intelligence in petroleum exploration and development[J]. Petroleum Exploration and Development, 2021, 48(1): 1-14. |
[14] | KUBOTA L, REINERT D. Machine learning forecasts oil rate in mature onshore field jointly driven by water and steam injection[C]//SPE Annual Technical Conference and Exhibition. Calgary, Alberta, Canada: SPE, 2019: D021S020R003. |
[15] | SHAHKARAMI A, MOHAGHEGH S. Applications of smart proxies for subsurface modeling[J]. Petroleum Exploration and Development, 2020, 47(2): 400-412. |
[16] | ARTUN E, KULGA B. Selection of candidate wells for re-fracturing in tight gas sand reservoirs using fuzzy inference[J]. Petroleum Exploration and Development, 2020, 47(2): 413-420. |
[17] | 李希元, 崔健, 胡望水, 等. 基于多源地球物理数据的机器学习方法在地质体分类中的应用: 以黑龙江多宝山矿集区为例[J]. 地球物理学报, 2022, 65(9): 3634-3649. |
LI Xiyuan, CUI Jian, HU Wangshui, et al. Application of machine learning method based on multi-source geophysical data to geological body classification—A case study of Duobaoshan ore concentration area (Heilongjiang, China)[J]. Chinese Journal of Geophysics, 2022, 65(9): 3634-3649. | |
[18] | ABUBAKAR A. Machine learning for geoscience applications[C]//81st EAGE Conference and Exhibition 2019 Workshop Programme. London, UK: European Association of Geoscientists & Engineers, 2019: 1. |
[19] | FOWLER J, STROBEL J. Scaling well log interpretation for faster results with AI[C]//First EAGE Digitalization Conference and Exhibition. Vienna, Austria: European Association of Geoscientists & Engineers, 2020: 1-5. |
[20] | 胡琪鑫, 徐亚. 地球物理信号特征识别与解释的机器学习方法及应用综述[J]. 地球物理学进展, 2022, 37(6): 2395-2407. |
HU Qixin, XU Ya. Review of machine learning and application of geophysical signal feature recognition and interpretation[J]. Progress in Geophysics, 2022, 37(6): 2395-2407. | |
[21] | FAHAD A, ALSHATRI N, TARI Z, et al. A survey of clustering algorithms for big data: Taxonomy and empirical analysis[J]. IEEE Transactions on Emerging Topics in Computing, 2014, 2(3): 267-279. |
[22] | NGUYEN T T T, ARMITAGE G. A survey of techniques for Internet traffic classification using machine learning[J]. IEEE Communications Surveys & Tutorials, 2008, 10(4): 56-76. |
[23] | KANUNGO T, MOUNT D M, NETANYAHU N S, et al. An efficient k-means clustering algorithm: Analysis and implementation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 881-892. |
[24] | 何清, 李宁, 罗文娟, 等. 大数据下的机器学习算法综述[J]. 模式识别与人工智能, 2014, 27(4): 327-336. |
HE Qing, LI Ning, LUO Wenjuan, et al. A survey of machine learning algorithms for big data[J]. Pattern Recognition and Artificial Intelligence, 2014, 27(4): 327-336. | |
[25] | 王元卓, 靳小龙, 程学旗. 网络大数据: 现状与展望[J]. 计算机学报, 2013, 36(6): 1125-1138. |
WANG Yuanzhuo, JIN Xiaolong, CHENG Xueqi. Network big data: Present and future[J]. Chinese Journal of Computers, 2013, 36(6): 1125-1138. | |
[26] | 王光宏, 蒋平. 数据挖掘综述[J]. 同济大学学报(自然科学版), 2004, 32(2): 246-252. |
WANG Guanghong, JIANG Ping. Survey of data mining[J]. Journal of Tongji University, 2004, 32(2): 246-252. | |
[27] | 王千年, 车爱兰, 冯少孔, 等. 高密度面波法在堆石体结构密实度检测中的应用[J]. 上海交通大学学报, 2013, 47(10): 1574-1579. |
WANG Qiannian, CHE Ailan, FENG Shaokong, et al. Application of high-density Rayleigh-wave exploration to evaluaton of rockfill density[J]. Journal of Shanghai Jiao Tong University, 2013, 47(10): 1574-1579. | |
[28] | 刘红帅, 郑桐, 齐文浩, 等. 常规土类剪切波速与埋深的关系分析[J]. 岩土工程学报, 2010, 32(7): 1142-1149. |
LIU Hongshuai, ZHENG Tong, QI Wenhao, et al. Relationship between shear wave velocity and depth of conventional soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7): 1142-1149. | |
[29] | 高印立, 阎澍旺, 王金英. 剪切波速与土性指标间的统计关系[J]. 建筑科学, 1998, 14(5): 20-22. |
GAO Yinli, YAN Shuwang, WANG Jinying. The statistical relation of shear velocity with soil properties[J]. Building Science, 1998, 14(5): 20-22. | |
[30] | 刘国华, 王振宇, 黄建平. 土的电阻率特性及其工程应用研究[J]. 岩土工程学报, 2004, 26(1): 83-87. |
LIU Guohua, WANG Zhenyu, HUANG Jianping. Research on electrical resistivity feature of soil and it’s application[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 83-87. |
[1] | 刘月笙, 贺宁, 贺利乐, 张译文, 习坤, 张梦芮. 基于机器学习的移动机器人路径跟踪MPC控制器参数自整定[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1028-1036. |
[2] | 鲍朱杰, 李祯, 王斐亮, 庞博, 杨健. 基于机器学习的直角扣件滑移和扭转性能预测方法[J]. 上海交通大学学报, 2024, 58(2): 242-252. |
[3] | 孙乾洋, 周利, 丁仕风, 刘仁伟, 丁一. 基于人工神经网络的极地船舶冰阻力预报方法[J]. 上海交通大学学报, 2024, 58(2): 156-165. |
[4] | 徐长节, 李欣雨. 基于人工神经网络的深基坑支护结构侧移预测[J]. 上海交通大学学报, 2024, 58(11): 1735-1744. |
[5] | 李明爱1,2,3,许冬芹1. 综述:运动想像脑机接口中的迁移学习[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 37-59. |
[6] | 苏泓嘉, 罗宇成, 刘飞. 装备体系效能评估及支撑技术综述[J]. 空天防御, 2023, 6(3): 29-38. |
[7] | 孙婕, 李子昊, 张书宇. 机器学习在化学合成及表征中的应用[J]. 上海交通大学学报, 2023, 57(10): 1231-1244. |
[8] | 甘娥忠, 刘焱, 王海荣, 王承光. 基于机器学习性能度量理论的保障资源指标综合权衡研究[J]. 空天防御, 2023, 6(1): 38-44. |
[9] | 贾岛, 陈磊, 朱志鹏, 余曜, 迟德建. 机器学习在引战系统设计中的应用研究[J]. 空天防御, 2022, 5(2): 27-31. |
[10] | 王卓鑫, 赵海涛, 谢月涵, 任翰韬, 袁明清, 张博明, 陈吉安. 反向传播神经网络联合遗传算法对复合材料模量的预测[J]. 上海交通大学学报, 2022, 56(10): 1341-1348. |
[11] | 李川, 聂熠文, 刘军伟, 孟凡钦, 沈晓静. 基于机器学习的多算法融合航迹稳健起始方法[J]. 空天防御, 2022, 5(1): 20-24. |
[12] | 周毅, 秦康平, 孙近文, 范栋琦, 郑义明. 台风气象环境电网设备风险量化预警及其N-m故障处置预案在线生成方法[J]. 上海交通大学学报, 2021, 55(S2): 22-30. |
[13] | 何夏维, 蔡云泽, 严玲玲. 一种合成残差式的反作用轮故障检测方法[J]. 上海交通大学学报, 2021, 55(6): 716-728. |
[14] | 祝颂, 钱晓超, 陆营波, 刘飞. 基于XGBoost的装备体系效能预测方法[J]. 空天防御, 2021, 4(2): 1-. |
[15] | 包清临, 柴华奇, 赵嵩正, 王吉林. 采用机器学习算法的技术机会挖掘模型及应用[J]. 上海交通大学学报, 2020, 54(7): 705-717. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||