上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (9): 1186-1195.doi: 10.16183/j.cnki.jsjtu.2022.252
所属专题: 《上海交通大学学报》2023年“电子信息与电气工程”专题
刘郑红1, 余亚丽1, 程伟伦2, 李牧之1, 杨丽霞3(), 赵晓峰1, 彭迪2, 牟仁德4, 刘德林4
收稿日期:
2022-07-01
修回日期:
2022-08-12
接受日期:
2022-08-31
出版日期:
2023-09-28
发布日期:
2023-09-27
通讯作者:
杨丽霞
E-mail:lixiayang@nuaa.edu.cn
作者简介:
刘郑红(1997-),硕士生,从事热障涂层测温研究.
基金资助:
LIU Zhenghong1, YU Yali1, CHENG Weilun2, LI Muzhi1, YANG Lixia3(), ZHAO Xiaofeng1, PENG Di2, MOU Rende4, LIU Delin4
Received:
2022-07-01
Revised:
2022-08-12
Accepted:
2022-08-31
Online:
2023-09-28
Published:
2023-09-27
Contact:
YANG Lixia
E-mail:lixiayang@nuaa.edu.cn
摘要:
精确在线测量热障涂层(TBCs)在热梯度环境下的真实隔热效果对热障涂层的设计以及开发具有重要意义.采用电子束物理气相沉积(EB-PVD)制备了含Eu掺杂的氧化钇部分稳定氧化锆(YSZ:Eu)表层、YSZ中间层与Dy掺杂YSZ(YSZ:Dy)底层的磷光传感热障涂层.利用磷光信号的热淬灭特性对温度梯度环境下YSZ涂层表面以及黏结层/YSZ层界面温度进行在线测量,对EB-PVD YSZ热障涂层的真实隔热效果进行评估.结果表明:平均厚度为113 μm的YSZ涂层在高温温度梯度下能够实现的平均温降为66.5 ℃,在温度区间为400~700 ℃内的平均热导率为(0.87±0.15) W/(m·K),略小于传统激光脉冲法的测量值 (0.95±0.02) W/(m·K).上述结果证实了磷光在线测温技术用于热障涂层隔热效果测量的可靠性,为热障涂层隔热效果的实时监控提供了一种有效方法.
中图分类号:
刘郑红, 余亚丽, 程伟伦, 李牧之, 杨丽霞, 赵晓峰, 彭迪, 牟仁德, 刘德林. 电子束物理气相沉积热障涂层隔热性能的磷光寿命在线测量[J]. 上海交通大学学报, 2023, 57(9): 1186-1195.
LIU Zhenghong, YU Yali, CHENG Weilun, LI Muzhi, YANG Lixia, ZHAO Xiaofeng, PENG Di, MOU Rende, LIU Delin. Evaluation of Thermal Insulation Performance of EB-PVD YSZ Thermal Barrier Coatings by Phosphorescence Lifetime Online Measurement[J]. Journal of Shanghai Jiao Tong University, 2023, 57(9): 1186-1195.
[1] |
THAKARE J G, PANDEY C, MAHAPATRA M M, et al. Thermal barrier coatings—A state of the art review[J]. Metals and Materials International, 2021, 27(7): 1947-1968.
doi: 10.1007/s12540-020-00705-w |
[2] | 金圣皓, 王博翔, 赵长颖. 热障涂层热物性研究进展[J]. 航空制造技术, 2021, 64(13): 59-76. |
JIN Shenghao, WANG Boxiang, ZHAO Changying. Research on status of thermal properties of thermal barrier coatings[J]. Aeronautical Manufacturing Technology, 2021, 64(13): 59-76. | |
[3] |
BAKAN E, VAßEN R. Ceramic top coats of plasma-sprayed thermal barrier coatings: Materials, processes, and properties[J]. Journal of Thermal Spray Technology, 2017, 26(6): 992-1010.
doi: 10.1007/s11666-017-0597-7 URL |
[4] | 赵娟利, 杨岚, 张成冠, 等. 热障涂层材料研究进展[J]. 现代技术陶瓷, 2020, 41(3): 148-170. |
ZHAO Juanli, YANG Lan, ZHANG Chengguan, et al. Recent progress in thermal barrier coatings[J]. Advanced Ceramics, 2020, 41(3): 148-170. | |
[5] |
BINDER C, FEUK H, RICHTER M. Phosphor thermometry for in-cylinder surface temperature measurements in diesel engines[J]. Journal of Luminescence, 2020, 226: 117415.
doi: 10.1016/j.jlumin.2020.117415 URL |
[6] |
YANG L X, PENG D, ZHAO C S, et al. Evaluation of the in-depth temperature sensing performance of Eu-and Dy-doped YSZ in air plasma sprayed thermal barrier coatings[J]. Surface and Coatings Technology, 2017, 316: 210-218.
doi: 10.1016/j.surfcoat.2017.03.029 URL |
[7] | 周益春, 杨丽, 刘志远, 等. 涡轮叶片热障涂层隔热效果的研究进展[J]. 中国材料进展, 2020, 39(10): 707-722. |
ZHOU Yichun, YANG Li, LIU Zhiyuan, et al. Research progress on insulation performance of thermal barrier coatings on turbine blade[J]. Materials China, 2020, 39(10): 707-722. | |
[8] | 张小伍, 徐佰明. 电子束物理气相沉积热障涂层隔热性能研究[J]. 汽轮机技术, 2020, 62(5): 399-400. |
ZHANG Xiaowu, XU Baiming. Thermal insulating properties of YSZ TBC deposited by EB-PVD[J]. Turbine Technology, 2020, 62(5): 399-400. | |
[9] |
LIU Z Y, ZHU W, YANG L, et al. Numerical prediction of thermal insulation performance and stress distribution of thermal barrier coatings coated on a turbine vane[J]. International Journal of Thermal Sciences, 2020, 158: 106552.
doi: 10.1016/j.ijthermalsci.2020.106552 URL |
[10] |
郝洪亮, 龙芸, 杨希刚, 等. 高温服役过程热障涂层隔热性能演变规律[J]. 动力工程学报, 2020, 40(8): 671-677.
doi: 10.19805/j.cnki.jcspe.2020.08.010 |
HAO Hongliang, LONG Yun, YANG Xigang, et al. Insulation property evolution of thermal barrier coatings during high temperature services[J]. Journal of Chinese Society of Power Engineering, 2020, 40(8): 671-677.
doi: 10.19805/j.cnki.jcspe.2020.08.010 |
|
[11] | 刘建华, 刘永葆, 贺星, 等. 涡轮叶片多层结构热障涂层隔热效果分析[J]. 航空发动机, 2017, 43(4): 1-6. |
LIU Jianhua, LIU Yongbao, HE Xing, et al. Analyzing of thermal insulation of thermal barrier coatings of a turbine vane[J]. Aeroengine, 2017, 43 (4): 1-6. | |
[12] |
FEIST J P, HEYES A L, NICHOLLS J R. Phosphor thermometry in an electron beam physical vapour deposition produced thermal barrier coating doped with dysprosium[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2001, 215(6): 333-341.
doi: 10.1243/0954410011533338 URL |
[13] |
FEIST J P, SOLLAZZO P Y, BERTHIER S, et al. Application of an industrial sensor coating system on a Rolls-Royce jet engine for temperature detection[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135 (1): 012101.
doi: 10.1115/1.4007370 URL |
[14] |
ALLISON S W, BESHEARS D L, CATES M R, et al. Luminescence of YAG: Dy and YAG: Dy, Er crystals to 1700 ℃[J]. Measurement Science and Technology, 2020, 31(4): 044001.
doi: 10.1088/1361-6501/ab4ebd URL |
[15] |
JENKINS T P, HESS C F, ALLISON S W, et al. Measurements of turbine blade temperature in an operating aero engine using thermographic phosphors[J]. Measurement Science and Technology, 2020, 31(4): 044003.
doi: 10.1088/1361-6501/ab4c20 URL |
[16] |
ELDRIDGE J I, WOLFE D E. Monitoring thermal barrier coating delamination progression by upconversion luminescence imaging[J]. Surface and Coatings Technology, 2019, 378: 124923.
doi: 10.1016/j.surfcoat.2019.124923 URL |
[17] |
ELDRIDGE J I. Luminescence decay-based Y2O3: Er phosphor thermometry: Temperature sensitivity governed by multiphonon emission with an effective phonon energy transition[J]. Journal of Luminescence, 2019, 214: 116535.
doi: 10.1016/j.jlumin.2019.116535 URL |
[18] |
PENG D, YANG L X, CAI T, et al. Phosphor-doped thermal barrier coatings deposited by air plasma spray for in-depth temperature sensing[J]. Sensors (Basel, Switzerland), 2016, 16(10): 1490.
doi: 10.3390/s16101490 URL |
[19] |
YANG L X, PENG D, SHAN X, et al. “Oxygen quenching” in Eu-based thermographic phosphors: Mechanism and potential application in oxygen/pressure sensing[J]. Sensors and Actuators B: Chemical, 2018, 254: 578-587.
doi: 10.1016/j.snb.2017.07.092 URL |
[20] |
LI Y Z, CAI T, YANG L X, et al. Effect of oxygen partial pressure on the phosphorescence of different lanthanide ion (Ln3+)-doped yttria-stabilised zirconia[J]. Sensors and Actuators B: Chemical, 2020, 308: 127666.
doi: 10.1016/j.snb.2020.127666 URL |
[21] |
KNAPPE C, LINDÉN J, ABOU NADA F, et al. Investigation and compensation of the nonlinear response in photomultiplier tubes for quantitative single-shot measurements[J]. The Review of Scientific Instruments, 2012, 83(3): 034901.
doi: 10.1063/1.3693618 URL |
[22] | GENTLEMAN M M. High temperature sensing of thermal barrier materials by luminescence[D]. Santa Barbara, USA: University of California, 2006. |
[23] |
HUI Y, ZHAO Y, ZHAO S M, et al. Fluorescence of Eu3+ as a probe of phase transformation of zirconia[J]. Journal of Alloys and Compounds, 2013, 573: 177-181.
doi: 10.1016/j.jallcom.2013.03.248 URL |
[24] | 单水维. Y2O3稳定ZrO2陶瓷材料导热性能的研究[D]. 包头: 内蒙古科技大学, 2007. |
SHAN Shuiwei. Study on thermal conduction properties of yttria-stabilized zirconia ceramic material[D]. Baotou: Inner Mongolia University of Science & Technology, 2007. |
[1] | 孙序成, 赵晓峰, 杨帆. 无压烧结凹凸棒块材的热导率研究[J]. 上海交通大学学报, 2023, 57(2): 194-200. |
[2] | 段力1,高均超1,汪瑞军2,胡铭楷1,苏靖超3 成清清3,张博3,袁涛2. 航空发动机叶片表面热障涂层温度分布的仿真分析[J]. 上海交通大学学报(自然版), 2017, 51(8): 915-920. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||