上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (9): 1176-1185.doi: 10.16183/j.cnki.jsjtu.2022.299
所属专题: 《上海交通大学学报》2023年“电子信息与电气工程”专题
李泽1, 钱勇1(), 臧奕茗1, 周小丽2, 盛戈皞1, 江秀臣1
收稿日期:
2022-07-25
修回日期:
2022-09-25
接受日期:
2022-11-23
出版日期:
2023-09-28
发布日期:
2023-09-27
通讯作者:
钱勇
E-mail:qian_yong@sjtu.edu.cn
作者简介:
李泽(1997-),博士生,从事电力设备局部放电状态监测与智能化研究.
基金资助:
LI Ze1, QIAN Yong1(), ZANG Yiming1, ZHOU Xiaoli2, SHENG Gehao1, JIANG Xiuchen1
Received:
2022-07-25
Revised:
2022-09-25
Accepted:
2022-11-23
Online:
2023-09-28
Published:
2023-09-27
Contact:
QIAN Yong
E-mail:qian_yong@sjtu.edu.cn
摘要:
局部放电(PD)的光学检测是反映设备绝缘状态的重要方法.C4F7N/CO2混合气体是目前最具有潜力的SF6替代气体,但是缺乏针对该混合气体光学PD特性和诊断方法的研究.构建了一个可采集7个特征波段的PD多光谱阵列检测平台,制作了4种PD缺陷,分析了5种不同比例的C4F7N/CO2混合气体和纯SF6气体条件下多光谱PD特征在相位分布、能量分布和特征堆叠图的异同,提出了一种基于多光谱特征(MF)和最近邻算法(KNN)的PD诊断新方法.实验结果表明,纯SF6故障识别准确率可达96.2%;C4F7N/CO2混合气体的识别率在88%以上,最高准确率为91.1%.该方法对环保型气体绝缘设备的PD诊断具有指导意义,也为传统的PD检测和诊断提供了新思路.
中图分类号:
李泽, 钱勇, 臧奕茗, 周小丽, 盛戈皞, 江秀臣. 基于多光谱阵列的C4F7N/CO2混合气体局部放电光学特征分析与诊断[J]. 上海交通大学学报, 2023, 57(9): 1176-1185.
LI Ze, QIAN Yong, ZANG Yiming, ZHOU Xiaoli, SHENG Gehao, JIANG Xiuchen. Optical Feature Analysis and Diagnosis of Partial Discharge in C4F7N/CO2 Based on Multispectral Array[J]. Journal of Shanghai Jiao Tong University, 2023, 57(9): 1176-1185.
[1] | 高克利, 颜湘莲, 王浩, 等. 环保型气体绝缘输电线路(GIL)技术发展[J]. 高电压技术, 2018, 44(10): 3105-3113. |
GAO Keli, YAN Xianglian, WANG Hao, et al. Progress in environment-friendly gas-insulated transmission line(GIL)[J]. High Voltage Engineering, 2018, 44(10): 3105-3113. | |
[2] | 臧奕茗, 钱勇, 陈孝信, 等. 基于非下采样Contourlet变换的光电图像融合方法在GIL局放检测中的应用[J]. 高电压技术, 2021, 47(2): 519-528. |
ZANG Yiming, QIAN Yong, CHEN Xiaoxin, et al. Application of photoelectric image fusion method based on non-subsampled contourlet transform in GIL partial discharge detection[J]. High Voltage Engineering, 2021, 47(2): 519-528. | |
[3] | 唐志国, 唐铭泽, 李金忠, 等. 电气设备局部放电模式识别研究综述[J]. 高电压技术, 2017, 43(7): 2263-2277. |
TANG Zhiguo, TANG Mingze, LI Jinzhong, et al. Review on partial discharge pattern recognition of electrical equipment[J]. High Voltage Engineering, 2017, 43(7): 2263-2277. | |
[4] |
缪金, 陈平, 顾寅, 等. 荧光光纤局部放电检测的优化匹配方法研究[J]. 电工电能新技术, 2021, 40(7): 62-69.
doi: 10.12067/ATEEE2101049 |
MIAO Jin, CHEN Ping, GU Yin, et al. Influence factors and optimization of partial discharge detection based on plastic fluorescent bare fiber[J]. Advanced Technology of Electrical Engineering and Energy, 2021, 40(7): 62-69.
doi: 10.12067/ATEEE2101049 |
|
[5] | 李军浩, 韩旭涛, 刘泽辉, 等. 电气设备局部放电检测技术述评[J]. 高电压技术, 2015, 41(8): 2583-2601. |
LI Junhao, HAN Xutao, LIU Zehui, et al. Review on partial discharge measurement technology of electrical equipment[J]. High Voltage Engineering, 2015, 41(8): 2583-2601. | |
[6] | 钱勇, 张悦, 刘伟, 等. T型GIS模型中局部放电光学信号传播特性仿真[J]. 高电压技术, 2019, 45(5): 1510-1517. |
QIAN Yong, ZHANG Yue, LIU Wei, et al. Simulation on the propagation of the optical signal of partial discharge in T-shaped GIS model[J]. High Voltage Engineering, 2019, 45(5): 1510-1517. | |
[7] | ZANG Y M, QIAN Y, WANG H, et al. A novel optical localization method for partial discharge source using ANFIS virtual sensors and simulation fingerprint in GIL[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-11. |
[8] |
WENGER P, BELTLE M, TENBOHLEN S, et al. Combined characterization of free-moving particles in HVDC-GIS using UHF PD, high-speed imaging, and pulse-sequence analysis[J]. IEEE Transactions on Power Delivery, 2019, 34(4): 1540-1548.
doi: 10.1109/TPWRD.61 URL |
[9] |
REN M, ZHOU J R, YANG S J, et al. Optical partial discharge diagnosis in SF6 gas-insulated system with SiPM-based sensor array[J]. IEEE Sensors Journal, 2018, 18(13): 5532-5540.
doi: 10.1109/JSEN.2018.2836423 URL |
[10] | 周文俊, 郑宇, 高克利, 等. 环保型绝缘气体电气特性研究进展[J]. 高电压技术, 2018, 44(10): 3114-3124. |
ZHOU Wenjun, ZHENG Yu, GAO Keli, et al. Progress in researching electrical characteristics of environment-friendly insulating gases[J]. High Voltage Engineering, 2018, 44(10): 3114-3124. | |
[11] | 颜湘莲, 郑宇, 黄河, 等. C4F7N/CO2混合气体对局部不均匀电场的敏感特性[J]. 电工技术学报, 2020, 35(1): 43-51. |
YAN Xianglian, ZHENG Yu, HUANG He, et al. Sensitivity of C4F7N/CO2 Gas Mixture to Partial Inhomogeneous Electric FieldFull text replacement[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 43-51. | |
[12] | 张晓星, 张引, 傅明利, 等. 基于紫外光谱的C4F7N/CO2混合气体混合比检测[J]. 高电压技术, 2019, 45(4): 1034-1039. |
ZHANG Xiaoxing, ZHANG Yin, FU Mingli, et al. Mixing ratio detection for C4F7N/CO2 mixed gas based on ultraviolet spectroscopy[J]. High Voltage Engineering, 2019, 45(4): 1034-1039. | |
[13] | 张晓星, 陈琪, 张季, 等. 高气压下环保型C4F7N/CO2混合气体工频击穿特性[J]. 电工技术学报, 2019, 34(13): 2839-2845. |
ZHANG Xiaoxing, CHEN Qi, ZHANG Ji, et al. Power frequency breakdown characteristics of EnvironmentalFriendly C4F7N/CO2 gas mixtures under high pressure conditions[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2839-2845. | |
[14] |
ONO R, ODA T. Measurement of hydroxyl radicals in pulsed corona discharge[J]. Journal of Electrostatics, 2002, 55(3/4): 333-342.
doi: 10.1016/S0304-3886(01)00215-7 URL |
[15] | KIEFFEL Y. Characteristics of g3-an alternative to SF6[C]∥2016 IEEE International Conference on Dielectrics. Montpellier, France: IEEE, 2016: 880-884. |
[16] |
LI Z, QIAN Y, WANG H, et al. A novel image-orientation feature extraction method for partial discharges[J]. IET Generation, Transmission & Distribution, 2022, 16(6): 1139-1150.
doi: 10.1049/gtd2.v16.6 URL |
[17] | 张磊, 刘建伟, 罗雄麟. 基于KNN和RVM的分类方法: KNN-RVM分类器[J]. 模式识别与人工智能, 2010, 23(3): 376-384. |
ZHANG Lei, LIU Jianwei, LUO Xionglin. KNN and RVM based classification method: KNN-RVM classifier[J]. Pattern Recognition and Artificial Intelligence, 2010, 23(3): 376-384. | |
[18] | 陈曦, 骆高超, 曹杰, 等. 基于改进K-近邻算法的XLPE电缆气隙放电发展阶段识别[J]. 电工技术学报, 2020, 35(23): 5015-5024. |
CHEN Xi, LUO Gaochao, CAO Jie, et al. Development stage identification of XLPE cable air-gap discharge based on improved K-nearest neighbor algorithm[J]. Transactions of China Electrotechnical Society, 2020, 35(23): 5015-5024. | |
[19] | 王栋璀, 丁云飞, 朱晨烜. 基于中智KNN的齿轮箱故障诊断方法[J]. 振动与冲击, 2019, 38(20): 148-153. |
WANG Dongcui, DING Yunfei, ZHU Chenxuan. A fault diagnosis method for gearbox based on neutrosophic K-Nearest Neighbor[J]. Journal of Vibration and Shock, 2019, 38(20): 148-153. | |
[20] | 刘凡, 张昀, 姚晓, 等. 基于K近邻算法的换流变压器局部放电模式识别[J]. 电力自动化设备, 2013, 33(5): 89-93. |
LIU Fan, ZHANG Yun, YAO Xiao, et al. Recognition of PD mode based on KNN algorithm for converter transformer[J]. Electric Power Automation Equipment, 2013, 33(5): 89-93. |
[1] | 陈昌川, 刘凯, 刘仁光, 冯晓棕, 覃延佳, 代少升, 张天骐. 基于多源局部放电信号数据流聚类分离方法[J]. 上海交通大学学报, 2022, 56(8): 1014-1023. |
[2] | 舒俊清, 许昱晖, 夏唐斌, 潘尔顺, 奚立峰. 面向多故障模式的多尺度相似性集成寿命预测[J]. 上海交通大学学报, 2022, 56(5): 564-575. |
[3] | 张悦, 钱勇, 刘伟, 臧奕茗, 盛戈皞, 江秀臣. 基于通量校正传输算法的局部放电光学信号机理仿真[J]. 上海交通大学学报, 2020, 54(12): 1244-1251. |
[4] | 李庆1,LIANG Steven Y1,2,杨建国1. 谐波小波样本熵与HMM模型的轴承故障模式识别[J]. 上海交通大学学报(自然版), 2016, 50(05): 723-729. |
[5] | 赵秀亮,程勇,王丽梅. 利用模式识别技术提高燃烧激励响应信号信噪比[J]. 上海交通大学学报(自然版), 2015, 49(05): 637-643. |
[6] | 王进,张军,胡白帆. 结合最优类别信息离散的细粒度超网络微阵列数据分类[J]. 上海交通大学学报(自然版), 2013, 47(12): 1856-1862. |
[7] | 肖敏1, 廖少明1, 周松2. 基于Web的隧道盾构法施工动态监控系统[J]. 上海交通大学学报(自然版), 2012, 46(01): 105-108. |
[8] | 廖雯竹1, 潘尔顺2, 王莹2, 奚立峰2. 统计模式识别和自回归滑动平均模型在 设备剩余寿命预测中的应用[J]. 上海交通大学学报(自然版), 2011, 45(07): 1000-1005. |
[9] | 杨旭,杨新,熊惠霖. 一种用于支持向量机分类器的组合核优化方法 [J]. 上海交通大学学报(自然版), 2010, 44(08): 1037-1041. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||