上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (9): 1176-1185.doi: 10.16183/j.cnki.jsjtu.2022.299

所属专题: 《上海交通大学学报》2023年“电子信息与电气工程”专题

• 电子信息与电气工程 • 上一篇    下一篇

基于多光谱阵列的C4F7N/CO2混合气体局部放电光学特征分析与诊断

李泽1, 钱勇1(), 臧奕茗1, 周小丽2, 盛戈皞1, 江秀臣1   

  1. 1.上海交通大学 电气工程系, 上海 200240
    2.复旦大学 光源与照明工程系, 上海 200433
  • 收稿日期:2022-07-25 修回日期:2022-09-25 接受日期:2022-11-23 出版日期:2023-09-28 发布日期:2023-09-27
  • 通讯作者: 钱勇 E-mail:qian_yong@sjtu.edu.cn
  • 作者简介:李泽(1997-),博士生,从事电力设备局部放电状态监测与智能化研究.
  • 基金资助:
    国家自然科学基金(62075045)

Optical Feature Analysis and Diagnosis of Partial Discharge in C4F7N/CO2 Based on Multispectral Array

LI Ze1, QIAN Yong1(), ZANG Yiming1, ZHOU Xiaoli2, SHENG Gehao1, JIANG Xiuchen1   

  1. 1. Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2. Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai 200433, China
  • Received:2022-07-25 Revised:2022-09-25 Accepted:2022-11-23 Online:2023-09-28 Published:2023-09-27
  • Contact: QIAN Yong E-mail:qian_yong@sjtu.edu.cn

摘要:

局部放电(PD)的光学检测是反映设备绝缘状态的重要方法.C4F7N/CO2混合气体是目前最具有潜力的SF6替代气体,但是缺乏针对该混合气体光学PD特性和诊断方法的研究.构建了一个可采集7个特征波段的PD多光谱阵列检测平台,制作了4种PD缺陷,分析了5种不同比例的C4F7N/CO2混合气体和纯SF6气体条件下多光谱PD特征在相位分布、能量分布和特征堆叠图的异同,提出了一种基于多光谱特征(MF)和最近邻算法(KNN)的PD诊断新方法.实验结果表明,纯SF6故障识别准确率可达96.2%;C4F7N/CO2混合气体的识别率在88%以上,最高准确率为91.1%.该方法对环保型气体绝缘设备的PD诊断具有指导意义,也为传统的PD检测和诊断提供了新思路.

关键词: C4F7N/CO2, 局部放电, 多光谱阵列, 光学检测, 模式识别

Abstract:

Optical detection of partial discharge (PD) is an important way to reflect the insulation status of equipment. C4F7N/CO2 gas mixture is one of the most potential substitutes for SF6 at present, but there is a lack of research on its optical PD characteristics and diagnostic methods. In this paper, a PD multispectral array detection platform that can collect 7 characteristic bands is constructed, and 4 kinds of PD defects are produced. The similarities and differences of the PD multispectral characteristics in phase distribution, energy distribution, and feature stacking map under the conditions of 5 different ratios of C4F7N/CO2 gas mixture and pure SF6 gas are analyzed. Finally, a novel method of PD diagnosis based on multispectral features (MF) and k-nearest neighbors (KNN) is proposed. The experimental results show that the fault recognition accuracy in pure SF6 can reach 96.2%. The recognition rate of C4F7N/CO2 gas mixture is above 88%, and the highest accuracy rate is 91.1%. This method has a guiding significance for the PD diagnosis of environmentally friendly gas-insulated equipment, and provides a new route for traditional PD detection and diagnosis.

Key words: C4F7N/CO2, partial discharge (PD), multispectral array, optical detection, pattern recognition

中图分类号: