上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (9): 1196-1202.doi: 10.16183/j.cnki.jsjtu.2022.361
所属专题: 《上海交通大学学报》2023年“电子信息与电气工程”专题
收稿日期:
2022-09-14
修回日期:
2022-11-14
接受日期:
2022-11-16
出版日期:
2023-09-28
发布日期:
2023-09-27
通讯作者:
王坤东
E-mail:kdwang@sjtu.edu.cn
作者简介:
陈尔东,硕士生,从事实时荧光PCR检测技术研究.
CHEN Erdong, GAO Zihang, WANG Kundong(), LEI Huaming
Received:
2022-09-14
Revised:
2022-11-14
Accepted:
2022-11-16
Online:
2023-09-28
Published:
2023-09-27
Contact:
WANG Kundong
E-mail:kdwang@sjtu.edu.cn
摘要:
热循环系统是实时荧光聚合酶链式反应(PCR)仪的关键组成部分,决定了核酸检测效率和结果准确性.针对传统PCR检测系统的热循环耗费时间长、温度控制复杂的问题,设计了一种分区温控的实时荧光PCR热循环系统,包括热循环系统硬件电路和机械结构,通过控制试液在不同恒温区切换实现快速热循环,采用增量式比例积分微分算法控制恒温区温度,控制精度达到 ±0.1 ℃.使用Fluent建立传热模型,分析试液热延迟现象预估试液变化规律.通过搭建PCR样机进行实验验证,试液升降温速率分别为3.8和4.4 ℃/s,证明了所提出PCR热循环系统能有效提高检测效率.
中图分类号:
陈尔东, 高孜航, 王坤东, 雷华明. 一种分区温控的实时荧光PCR快速热循环系统设计[J]. 上海交通大学学报, 2023, 57(9): 1196-1202.
CHEN Erdong, GAO Zihang, WANG Kundong, LEI Huaming. Design of a Rapid Thermal Cycling System for Real-Time Fluorescent PCR with Zone Temperature Control[J]. Journal of Shanghai Jiao Tong University, 2023, 57(9): 1196-1202.
[1] | MULLIS K B, FALOONA F A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction[M]//Methods in enzymology. Amsterdam: Elsevier, 1987: 335-350. |
[2] | CHAO L C, TSAI H Y, LI C R, et al. Fluorescence signal-to-noise ratio enhanced by off-plane excitation for quantitative PCR device[C]//2020 IEEE International Symposium on Medical Measurements and Applications. Bari, Italy: IEEE, 2020: 1-6. |
[3] |
CANFIELD S J, BOWEN B W. A rapid PCR-RFLP method for species identification of the eastern Pacific horn sharks (genus Heterodontus)[J]. Conservation Genetics Resources, 2021, 13(1): 79-84.
doi: 10.1007/s12686-020-01172-6 |
[4] |
CUI J, LI F, SHI Z L. Origin and evolution of pathogenic coronaviruses[J]. Nature Reviews Microbiology, 2019, 17(3): 181-192.
doi: 10.1038/s41579-018-0118-9 pmid: 30531947 |
[5] |
BERGAMO E, CHIAPOLINO G, LIGNITTO L, et al. Evaluation of fast PCR reagents for rapid and sensitive detection of human herpesvirus 8[J]. Journal of Virological Methods, 2012, 181(1): 125-130.
doi: 10.1016/j.jviromet.2012.01.002 pmid: 22266419 |
[6] |
BUSTIN S A. How to speed up the polymerase chain reaction[J]. Biomolecular Detection and Quantification, 2017, 12: 10-14.
doi: 10.1016/j.bdq.2017.05.002 pmid: 28702368 |
[7] | CHUENAROM P, SILAPUNT R. Microwave heating system for the LAMP technique based DNA amplification process[C]//2018 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. Chiang Rai, Thailand: IEEE, 2018: 712-715. |
[8] | RAZA M, MALIK I R, AKHTAR I. Design and thermal analysis of sample block PCR for DNA amplification[C]//2020 17th International Bhurban Conference on Applied Sciences and Technology. Islamabad, Pakistan: IEEE, 2020: 210-217. |
[9] | KUBICKI W, SASOWSKI M, WALA A. Microfluidic chip for cyclical continuous-flow PCR—Preliminary results of the technology[C]//2018 XV International Scientific Conference on Optoelectronic and Electronic Sensors. Warsaw, Poland: IEEE, 2018: 1-3. |
[10] | 翁振宇, 闵小平, 王海, 等. 对流实时荧光定量PCR系统设计[J]. 厦门大学学报(自然科学版), 2018, 57(1): 130-136. |
WENG Zhenyu, MIN Xiaoping, WANG Hai, et al. Design on real-time fluorescence quantitative PCR system based on natural convection[J]. Journal of Xiamen University (Natural Science), 2018, 57(1): 130-136. | |
[11] | LIU C X, ZHU J, XIE Y S, et al. Design of a portable array PCR instrument[C]//2021 IEEE International Conference on Recent Advances in Systems Science and Engineering. Shanghai, China: IEEE, 2021: 1-6. |
[12] |
WU D, SHI B, LI B, et al. A pipeline-based oil-bath PCR method for bacteria detection[J]. IEEE Access, 2020, 8: 99598-99604.
doi: 10.1109/Access.6287639 URL |
[13] | LI J, LIU S H, LI S L, et al. PCR instrument temperature control system based on multimodal control[C]//2020 Chinese Control and Decision Conference. Hefei, China: IEEE, 2020: 149-154. |
[14] | 张涛, 王亚刚, 李开言. 聚合酶链式反应仪的IGWO-BP神经网络PID控制[J/OL]. 控制工程. https://doi.org/10.14107/j.cnki.kzgc.20210023. |
ZHANG Tao, WANG Yagang, LI Kaiyan. The IGWO-BP neural network PID control of polymerase chain reaction instrument[J/OL]. Control Engineering of China. https://doi.org/10.14107/j.cnki.kzgc.20210023. | |
[15] |
TRAUBA J M, WITTWER C T. Microfluidic extreme PCR: <1 minute DNA amplification in a thin film disposable[J]. Journal of Biomedical Science and Engineering, 2017, 10(5): 219-231.
doi: 10.4236/jbise.2017.105017 URL |
[16] | 李佳乐, 林晟豪, 许文涛. 快速聚合酶链式反应装置研究进展[J]. 农业生物技术学报, 2021, 29(12): 2416-2426. |
LI Jiale, LIN Shenghao, XU Wentao. Research progress of rapid polymerase chain reaction equipment[J]. Journal of Agricultural Biotechnology, 2021, 29(12): 2416-2426. | |
[17] |
LEE S H, PARK S M, KIM B N, et al. Emerging ultrafast nucleic acid amplification technologies for next-generation molecular diagnostics[J]. Biosensors and Bioelectronics, 2019, 141: 111448.
doi: 10.1016/j.bios.2019.111448 URL |
[18] |
TRINH K T L, LEE N Y. A portable microreactor with minimal accessories for polymerase chain reaction: Application to the determination of foodborne pathogens[J]. Microchimica Acta, 2017, 184(11): 4225-4233.
doi: 10.1007/s00604-017-2451-5 URL |
[19] | 张辰, 孙继贤, 梁晓会, 等. PCR仪温度过冲特性有限元仿真研究[J]. 中国测试, 2022, 48(4): 117-122. |
ZHANG Chen, SUN Jixian, LIANG Xiaohui, et al. Finite element simulation research on temperature overshoot characteristics of a PCR instrument[J]. China Measurement & Test, 2022, 48(4): 117-122. | |
[20] | 邹兴. 全自动荧光定量PCR关键技术研究及其系统研制[D]. 深圳: 深圳大学, 2018. |
ZOU Xing. Research on key technologies of automatic fluorescence quantitative PCR and its system development[D]. Shenzhen: Shenzhen University, 2018. | |
[21] |
LEE B B, LEE Y, KIM S M, et al. Rapid membrane-based photothermal PCR for disease detection[J]. Sensors and Actuators B: Chemical, 2022, 360: 131554.
doi: 10.1016/j.snb.2022.131554 URL |
[22] |
KHNOUF R, ABDEL KAREEM JARADAT M, KARASNEH D, et al. Simulation and optimization of a single heater convective PCR chip and its controller for fast salmonella enteritidis detection[J]. IEEE Sensors Journal, 2020, 20(22): 13186-13195.
doi: 10.1109/JSEN.7361 URL |
[23] | 刘文通, 陈俐, 陈峻. 考虑延迟的汽车线控转向系统自适应内模控制[J]. 上海交通大学学报, 2021, 55(10): 1210-1218. |
LIU Wentong, CHEN Li, CHEN Jun. Adaptive internal model control for automotive steer-by-wire system with time delay[J]. Journal of Shanghai Jiao Tong University, 2021, 55(10): 1210-1218. |
[1] | 祝捍皓, 肖瑞, 朱军, 唐骏. 浅海水平变化波导下低频声能量传输特性[J]. 上海交通大学学报, 2021, 55(8): 958-967. |
[2] | 赵亮,雷默涵,朱星星,王帅,凌正,杨军,梅雪松. 高精度数控机床主轴系统热误差的控制方法[J]. 上海交通大学学报, 2020, 54(11): 1165-1171. |
[3] | 刘晓媛,薛鸿祥,唐文勇. 轴向承载力作用下非粘结柔性立管的侧向失效分析[J]. 上海交通大学学报(自然版), 2018, 52(9): 1017-1022. |
[4] | 徐志宇, 吴志良, 余有灵. 人机可交互的水冷式温控实验系统设计[J]. 实验室研究与探索, 2017, 36(5): 53-56. |
[5] | 金朝阳1,李南南1,李克严1,严凯1,崔振山2. 压下模式对镁合金宏观塑性变形和微观组织演变的影响[J]. 上海交通大学学报(自然版), 2017, 51(1): 119-. |
[6] | 高蕾a,谢富纪b. 带有随机输入的椭圆偏微分方程的混合有限元方法[J]. 上海交通大学学报(自然版), 2016, 50(04): 625-630. |
[7] | 陈金伟,陈梅珊,梅姣姣,张会生. 考虑环境温度和功率的燃气轮机进口可转导叶控制策略优化[J]. 上海交通大学学报(自然版), 2016, 50(04): 540-544. |
[8] | 熊志鑫. 船体结构有限元建模与分析[J]. 海洋工程装备与技术, 2015, 2(5): 331-331. |
[9] | 张抗寒, 陈锦剑, 王建华, 杜毅. 紧邻基坑同步施工下坑间隧道的变形特性[J]. 上海交通大学学报, 2013, 47(10): 1537-1541. |
[10] | 王颖轶1,李科2,黄醒春1. 基于地应力实测值的断层构造区域地应力场有限元回归反演分析[J]. 上海交通大学学报(自然版), 2013, 47(09): 1399-1403. |
[11] | 丁欣, 王华, 高翔. 基于影响系数矩阵范数的尾灯区域稳健设计[J]. 上海交通大学学报(自然版), 2013, 47(02): 264-268. |
[12] | 陈楠, 陈锦剑, 夏小和, 王建华, 钟俊彬. 长钢顶管稳定特性的有限元分析[J]. 上海交通大学学报, 2012, 46(05): 832-836. |
[13] | 秦红星1, 杨杰2. 基于无网格局部彼得罗夫伽辽金方法的点采样曲面滤波[J]. 上海交通大学学报(自然版), 2012, 46(04): 584-590. |
[14] | 宋世俊, 黄建国. 一个反源问题的极小化能量泛函正则化方法[J]. 上海交通大学学报(自然版), 2011, 45(12): 1846-1851. |
[15] | 陈韵骋1, 黄建国1, 徐一峰2, 3. 线弹性力学问题局部间断有限元方法的后验误差估计[J]. 上海交通大学学报(自然版), 2011, 45(12): 1857-1862. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||