上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (8): 1005-1015.doi: 10.16183/j.cnki.jsjtu.2021.538
所属专题: 《上海交通大学学报》2023年“机械与动力工程”专题
钟智伟, 王誉翔, 黄亦翔(), 肖登宇, 夏鹏程, 刘成良
收稿日期:
2020-12-30
修回日期:
2022-03-10
接受日期:
2022-04-25
出版日期:
2023-08-28
发布日期:
2023-08-31
通讯作者:
黄亦翔,副研究员;E-mail: 作者简介:
钟智伟(1998-),硕士生,从事电力电子可靠性研究.
基金资助:
ZHONG Zhiwei, WANG Yuxiang, HUANG Yixiang(), XIAO Dengyu, XIA Pengcheng, LIU Chengliang
Received:
2020-12-30
Revised:
2022-03-10
Accepted:
2022-04-25
Online:
2023-08-28
Published:
2023-08-31
摘要:
为提高绝缘栅双极型晶体管(IGBT)模块跨工况剩余寿命的预测精度以提升其可靠性,针对不同工况下IGBT模块的瞬态热阻特征提出一种基于概率稀疏自注意力机制和迁移学习的剩余使用寿命预测方法.搭建了IGBT模块加速老化试验台,在不同温度区间进行IGBT模块功率循环实验,采集不同工况下该模块全生命周期状态数据,计算获得IGBT模块衰退过程中的瞬态热阻变化数据,提取并筛选能准确反映IGBT模块老化状态的瞬态热阻特征,并使用所提方法开展跨工况剩余使用寿命预测.实验结果表明,提出的IGBT模块剩余寿命的跨工况预测方法精度明显优于其他对比方法,特别是IGBT模块早期衰退过程中的剩余寿命预测精度得到了显著提升.
中图分类号:
钟智伟, 王誉翔, 黄亦翔, 肖登宇, 夏鹏程, 刘成良. 基于概率稀疏自注意力的IGBT模块剩余寿命跨工况预测[J]. 上海交通大学学报, 2023, 57(8): 1005-1015.
ZHONG Zhiwei, WANG Yuxiang, HUANG Yixiang, XIAO Dengyu, XIA Pengcheng, LIU Chengliang. Remaining Useful Life Prediction of IGBT Modules Across Working Conditions Based on ProbSparse Self-Attention[J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 1005-1015.
表3
模型结构参数
网络模块 | 具体实现 | 参数 | 输出尺寸 |
---|---|---|---|
输入层 | - | - | 50×12 |
嵌入层 | 一维卷积 | 卷积核为12×3×256 | 50×256 |
概率稀疏自注意力 | 线性变换 | 权重为50×256×32 | 50×32 |
模块 | 注意力计算 | - | 50×32 |
(n=8, dk=32) | 合并 | - | 50×256 |
后处理模块 | 层正则化 | - | 50×256 |
一维卷积 | 卷积核为256×1×128 | 50×128 | |
一维卷积 | 卷积核为128×1×256 | 50×256 | |
层正则化 | - | 50×256 | |
一维卷积 | 卷积核为256×5×64 | 46×64 | |
全局池化层 | - | 1×64 | |
全连接模块 | 全连接层 | 权重为64×32 | 32 |
全连接层 | 权重为32×1 | 1 |
表4
不同模型预测结果
方法 | IGBT1→IGBT2 | IGBT1→IGBT3 | IGBT2→IGBT1 | IGBT2→IGBT3 | IGBT3→IGBT1 | IGBT3→IGBT2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | ||||||
本文模型 | 0.001 6 | 0.031 9 | 0.001 0 | 0.024 3 | 0.002 6 | 0.041 9 | 0.001 6 | 0.033 0 | 0.005 8 | 0.058 5 | 0.001 6 | 0.032 5 | |||||
gMLP | 0.006 1 | 0.071 3 | 0.088 7 | 0.225 8 | 0.006 4 | 0.067 5 | 0.095 6 | 0.253 8 | 0.008 1 | 0.065 0 | 0.026 8 | 0.128 6 | |||||
LSTM | 0.009 3 | 0.074 3 | 0.027 3 | 0.129 4 | 0.009 2 | 0.081 7 | 0.033 1 | 0.155 7 | 0.013 5 | 0.084 5 | 0.027 6 | 0.129 4 | |||||
TCA+gMLP | 0.004 2 | 0.056 6 | 0.012 7 | 0.088 9 | 0.005 5 | 0.059 1 | 0.007 5 | 0.074 0 | 0.010 0 | 0.079 1 | 0.015 5 | 0.103 2 | |||||
CORAL+LSTM | 0.007 2 | 0.058 1 | 0.025 2 | 0.123 3 | 0.004 6 | 0.055 6 | 0.042 2 | 0.165 3 | 0.032 5 | 0.137 8 | 0.043 1 | 0.159 8 |
[1] |
CARAMEL C, AUSTIN P, SANCHEZ J L, et al. Integrated IGBT short-circuit protection structure: Design and optimization[J]. Microelectronics Journal, 2006, 37(3): 249-256.
doi: 10.1016/j.mejo.2005.09.028 URL |
[2] | 刘嘉诚. 基于机器学习算法的IGBT寿命预测研究[D]. 合肥: 合肥工业大学, 2020. |
LIU Jiacheng. IGBT life prediction based on machine learning algorithm[D]. Hefei: Hefei University of Technology, 2020. | |
[3] |
YANG S Y, BRYANT A, MAWBY P, et al. An industry-based survey of reliability in power electronic converters[J]. IEEE Transactions on Industry Applications, 2011, 47(3): 1441-1451.
doi: 10.1109/TIA.2011.2124436 URL |
[4] | GOPIREDDY L R, TOLBERT L M, OZPINECI B. Power cycle testing of power switches: A literature survey[J]. IEEE Transactions on Power Electronics, 2015, 30(5): 2465-2473. |
[5] | 唐圣学, 张继欣, 姚芳, 等. IGBT模块寿命预测方法研究综述[J]. 电源学报, 2021: 1-29. |
TANG Shengxue, ZHANG Jixin, YAO Fang, et al. An overview of lifetime prediction methods for IGBT power module[J]. Journal of Power Supply, 2021: 1-29. | |
[6] | HUANG Q, PENG C, WANG L C, et al. Effects of current and bonding wires damage on high-power IGBT module reliability by electro-thermo-mechanical simulation[C]//2020 21st International Conference on Electronic Packaging Technology. Guangzhou, China: IEEE, 2020: 1-4. |
[7] | 张亚玲, 李志刚. 基于加速老化试验的IGBT寿命预测模型研究[J]. 电气传动, 2016, 46(10): 72-75. |
ZHANG Yaling, LI Zhigang. Research on IGBT lifetime prediction models based on accelerated lifetime test[J]. Electric Drive, 2016, 46(10): 72-75. | |
[8] | 田航, 陈民武, 张振宇, 等. 牵引负荷对补偿装置功率模块寿命预测的影响及分析[J]. 电气化铁道, 2019, 30(1): 24-28. |
TIAN Hang, CHEN Minwu, ZHANG Zhenyu, et al. Influence to prediction of service life of power modules of compensation device caused by traction load and its analysis[J]. Electric Railway, 2019, 30(1): 24-28. | |
[9] | 刘子英, 朱琛磊. 基于Elman神经网络模型的IGBT寿命预测[J]. 半导体技术, 2019, 44(5): 395-400. |
LIU Ziying, ZHU Chenlei. IGBT life prediction based on Elman neural network model[J]. Semiconductor Technology, 2019, 44(5): 395-400. | |
[10] | 葛建文, 黄亦翔, 陶智宇, 等. 基于Transformer模型的IGBT剩余寿命预测[J]. 半导体技术, 2021, 46(4): 316-323. |
GE Jianwen, HUANG Yixiang, TAO Zhiyu, et al. Residual useful life prediction of IGBTs based on transformer model[J]. Semiconductor Technology, 2021, 46(4): 316-323. | |
[11] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. (2017-12-06)[2021-12-30]. https//arxiv.org/abs/1706.03762. |
[12] |
CAO Y D, DING Y F, JIA M P, et al. A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings[J]. Reliability Engineering & System Safety, 2021, 215: 107813.
doi: 10.1016/j.ress.2021.107813 URL |
[13] |
MO Y, WU Q H, LI X, et al. Remaining useful life estimation via transformer encoder enhanced by a gated convolutional unit[J]. Journal of Intelligent Manufacturing, 2021, 32(7): 1997-2006.
doi: 10.1007/s10845-021-01750-x |
[14] | ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[EB/OL]. (2021-03-28)[2021-12-30]. https//arxiv.org/abs/2012.07436. |
[15] | GEHRING J, AULI M, GRANGIER D, et al. Convolutional sequence to sequence learning[C]//34th International Conference on Machine Learning. Sydney, Australia: PMLR, 2017: 1243-1252. |
[16] |
LONG M S, CAO Y, CAO Z J, et al. Transferable representation learning with deep adaptation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(12): 3071-3085.
doi: 10.1109/TPAMI.2018.2868685 pmid: 30188813 |
[17] | 曾东, 孙林, 周雒维, 等. 基于加速老化试验IGBT性能退化特征参量的可靠性评估[J]. 电工电能新技术, 2019, 38(7): 20-28. |
ZENG Dong, SUN Lin, ZHOU Luowei, et al. Reliability evaluation of IGBT performance degradation characteristic parameters based on accelerated aging test[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38(7): 20-28. | |
[18] | 刘宾礼, 刘德志, 唐勇, 等. 基于加速寿命试验的IGBT模块寿命预测和失效分析[J]. 江苏大学学报(自然科学版), 2013, 34(5): 556-563. |
LIU Binli, LIU Dezhi, TANG Yong, et al. Lifetime prediction and failure analysis of IGBT module based on accelerated lifetime test[J]. Journal of Jiangsu University (Natural Science Edition), 2013, 34(5): 556-563. | |
[19] | 张全. 电子元器件加速寿命试验技术浅析[J]. 空间电子技术, 2016, 13(6): 86-88. |
ZHANG Quan. Analysis on the accelerated life test technique of electronic components[J]. Space Electronic Technology, 2016, 13(6): 86-88. | |
[20] | 姬煜轲, 侯婷, 何智鹏, 等. 一种柔直换流阀用压接型IGBT功率子模块加速老化试验方法[J]. 南方电网技术, 2021, 15(5): 1-11. |
JI Yuke, HOU Ting, HE Zhipeng, et al. An accelerated aging test method of press-pack IGBTs based power submodules for VSC-HVDC converter valve[J]. Southern Power System Technology, 2021, 15(5): 1-11. | |
[21] |
SMET V, FOREST F, HUSELSTEIN J J, et al. Ageing and failure modes of IGBT modules in high-temperature power cycling[J]. IEEE Transactions on Industrial Electronics, 2011, 58(10): 4931-4941.
doi: 10.1109/TIE.2011.2114313 URL |
[22] | 陈一高, 陈民铀, 高兵, 等. 基于瞬态热阻的IGBT焊料层失效分析[J]. 中国电机工程学报, 2018, 38(10): 3059-3067. |
CHEN Yigao, CHEN Minyou, GAO Bing, et al. Evaluation of solder failure of an IGBT module based on transient thermal impedance[J]. Proceedings of the CSEE, 2018, 38(10): 3059-3067. | |
[23] |
MOROZUMI A, YAMADA K, MIYASAKA T, et al. Reliability of power cycling for IGBT power semiconductor modules[J]. IEEE Transactions on Industry Applications, 2003, 39(3): 665-671.
doi: 10.1109/TIA.2003.810661 URL |
[24] | 卓鹏程, 严瑾, 郑美妹, 等. 面向滚动轴承全生命周期故障诊断的GA-OIHF Elman神经网络算法[J]. 上海交通大学学报, 2021, 55(10): 1255-1262. |
ZHUO Pengcheng, YAN Jin, ZHENG Meimei, et al. GA-OIHF Elman neural network algorithm for fault diagnosis of full life cycle of rolling bearing[J]. Journal of Shanghai Jiao Tong University, 2021, 55(10): 1255-1262. | |
[25] |
WANG Y, PENG Y Z, ZI Y Y, et al. A two-stage data-driven-based prognostic approach for bearing degradation problem[J]. IEEE Transactions on Industrial Informatics, 2016, 12(3): 924-932.
doi: 10.1109/TII.2016.2535368 URL |
[26] | LIU H, DAI Z, SO D R, et al. Pay attention to mlps[J]. Advances in Neural Information Processing Systems, 2021, 34: 9204-9215. |
[27] |
PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199-210.
doi: 10.1109/TNN.2010.2091281 pmid: 21095864 |
[28] | SUN B C, SAENKO K. Deep coral: Correlation alignment for deep domain adaptation[C/OL].(2016-11-24)[2021-12-30]. https//link.springer.com/chapter/10.1007/978-3-319-49409-8_35. |
[1] | 李明爱1,2,3,许冬芹1. 综述:运动想像脑机接口中的迁移学习[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 37-59. |
[2] | 王汉禹, 陈震, 周笛, 陈兆祥, 潘尔顺. 基于核函数-Wiener过程的轧辊非线性退化建模与剩余寿命预测[J]. 上海交通大学学报, 2023, 57(8): 1037-1045. |
[3] | 曹现刚1, 2,雷卓1,李彦川1,张梦园1,段欣宇1. 基于Self-Attention-LSTM神经网络的设备剩余寿命预测方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 652-664. |
[4] | 郭俊锋, 王淼生, 王智明. 基于对不平衡数据集进行二次迁移学习的滚动轴承剥落类故障诊断方法[J]. 上海交通大学学报, 2023, 57(11): 1512-1521. |
[5] | 王者蓝, 赵宏杰, 赵凡, 沈晨晨, 吴佳伟. 基于卷积神经网络与滤波融合算法的某惯导系统剩余寿命预测模型建立[J]. 空天防御, 2023, 6(1): 70-77. |
[6] | 唐泽宇, 邹小虎, 李鹏飞, 张伟, 余佳奇, 赵耀东. 基于迁移学习的小样本OFDM目标增强识别方法[J]. 上海交通大学学报, 2022, 56(12): 1666-1674. |
[7] | 沈慧, 刘世民, 许敏俊, 黄德林, 鲍劲松, 郑小虎. 面向加工领域的数字孪生模型自适应迁移方法[J]. 上海交通大学学报, 2022, 56(1): 70-80. |
[8] | 何新林, 戚宗锋, 李建勋. 基于隐变量后验生成对抗网络的不平衡学习[J]. 上海交通大学学报, 2021, 55(5): 557-565. |
[9] | 王悦行, 吴永国, 徐传刚. 基于深度迁移学习的红外舰船目标检测算法[J]. 空天防御, 2021, 4(4): 61-66. |
[10] | 姜宇迪, 胡晖, 殷跃红. 基于无监督迁移学习的电梯制动器剩余寿命预测[J]. 上海交通大学学报, 2021, 55(11): 1408-1416. |
[11] | 陈伟a,b,阙秀福a,冯伟a,b,张建华a,杨连乔a. 基于贝叶斯概率统计的发光二极管瞬态热阻分析[J]. 上海交通大学学报(自然版), 2016, 50(04): 636-640. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||