上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (3): 312-324.doi: 10.16183/j.cnki.jsjtu.2021.391
所属专题: 《上海交通大学学报》“新型电力系统与综合能源”专题(2022年1~6月)
收稿日期:
2021-10-08
出版日期:
2022-03-28
发布日期:
2022-04-01
作者简介:
王文彬(1985-),男,湖北省武汉市人,硕士,高级工程师,从事分布式电源及微电网技术研究;E-mail: WANG Wenbin(), ZHENG Shujiang, FAN Ruixiang, CHEN Wen, ZHOU Shiyang
Received:
2021-10-08
Online:
2022-03-28
Published:
2022-04-01
摘要:
随着分布式发电研究与应用的迅速发展,分布式交易市场作为一种新型的电力交易模式,能够有效提升可再生能源消纳率,是推动实现“碳达峰、碳中和”目标的重要手段.将市场评价机制引入用户的竞拍交易机制中,将促使用户考虑市场评价机制对其交易策略的影响,推动分布式交易市场的良性发展.针对微网用户间的分布式电能交易市场展开研究,首先,以市场参与主体及交易支撑软硬件为研究对象,分别从电能供应能力、用户满意度、平台安全性等方面建立多维度绩效评价指标体系.然后,对分布式电能交易市场评价方法研究现状进行总结与梳理,并从指标体系建立、指标计算方法及综合评价方法三方面分析了分布式电能交易绩效评价的关键技术.最后,结合当前发展现状,对未来分布式电能交易绩效评价的研究方向进行了展望.
中图分类号:
王文彬, 郑蜀江, 范瑞祥, 陈文, 周世阳. “双碳”背景下微网分布式电能交易绩效评价指标与方法[J]. 上海交通大学学报, 2022, 56(3): 312-324.
WANG Wenbin, ZHENG Shujiang, FAN Ruixiang, CHEN Wen, ZHOU Shiyang. Performance Evaluation Index and Method of Micro-Grid Distributed Electricity Trading Under the Background of “Carbon Peaking and Carbon Neutrality”[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 312-324.
[1] | 邓旭, 谢俊, 滕飞. 何谓“碳中和”?[J]. 气候变化研究进展, 2021, 17(1):107-113. |
DENG Xu, XIE Jun, TENG Fei. What is carbon neutrality?[J]. Climate Change Research, 2021, 17(1):107-113. | |
[2] | 王灿, 张雅欣. 碳中和愿景的实现路径与政策体系[J]. 中国环境管理, 2020, 12(6):58-64. |
WANG Can, ZHANG Yaxin. Implementation pathway and policy system of carbon neutrality vision[J]. Chinese Journal of Environmental Management, 2020, 12(6):58-64. | |
[3] | 张雅欣, 罗荟霖, 王灿. 碳中和行动的国际趋势分析[J]. 气候变化研究进展, 2021, 17(1):88-97. |
ZHANG Yaxin, LUO Huilin, WANG Can. Progress and trends of global carbon neutrality pledges[J]. Climate Change Research, 2021, 17(1):88-97. | |
[4] | HADDADI A, BOULET B, YAZDANI A, et al. A μ-based approach to small-signal stability analysis of an interconnected distributed energy resource unit and load[J]. IEEE Transactions on Power Delivery, 2015, 30(4):1715-1726. |
[5] | 盛万兴, 吴鸣, 季宇, 等. 分布式可再生能源发电集群并网消纳关键技术及工程实践[J]. 中国电机工程学报, 2019, 39(8):2175-2186. |
SHENG Wanxing, WU Ming, JI Yu, et al. Key techniques and engineering practice of distributed renewable generation clusters integration[J]. Proceedings of the CSEE, 2019, 39(8):2175-2186. | |
[6] | 王蓓蓓, 李雅超, 赵盛楠, 等. 基于区块链的分布式能源交易关键技术[J]. 电力系统自动化, 2019, 43(14):53-64. |
WANG Beibei, LI Yachao, ZHAO Shengnan, et al. Key technologies on blockchain based distributed energy transaction[J]. Automation of Electric Power Systems, 2019, 43(14):53-64. | |
[7] | 李彬, 覃秋悦, 祁兵, 等. 基于区块链的分布式能源交易方案设计综述[J]. 电网技术, 2019, 43(3):961-972. |
LI Bin, QIN Qiuyue, QI Bing, et al. Design of distributed energy trading scheme based on blockchain[J]. Power System Technology, 2019, 43(3):961-972. | |
[8] | 王成山, 王守相. 智能微网在分布式能源接入中的作用与挑战[J]. 中国科学院院刊, 2016, 31(2):232-240. |
WANG Chengshan, WANG Shouxiang. The role and challenge of smart mircogrid in the integration of distributed energy resources[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(2):232-240. | |
[9] | LONG C, WU J Z, ZHANG C H, et al. Peer-topeer energy trading in a community microgrid[C]// 2017 IEEE Power & Energy Society General Meeting. Chicago, IL, USA: IEEE, 2017: 1-5. |
[10] | LI Z T, KANG J W, YU R, et al. Consortium blockchain for secure energy trading in industrial Internet of Things[J]. IEEE Transactions on Industrial Informatics, 2018, 14(8):3690-3700. |
[11] | KUMAR M, SRIVASTAVA S C, SINGH S N, et al. Development of a control strategy for interconnection of islanded direct current microgrids[J]. IET Renewable Power Generation, 2015, 9(3):284-296. |
[12] | TUSHAR W, SAHA T K, YUEN C, et al. Peer-to-peer energy trading with sustainable user participation: A game theoretic approach[J]. IEEE Access, 2018, 6:62932-62943. |
[13] | MORSTYN T, FARRELL N, DARBY S J, et al. Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants[J]. Nature Energy, 2018, 3(2):94-101. |
[14] | WANG D, SU P F, LIU B, et al. Research on bidding strategy based on evaluation mechanism for peer-to-peer energy tradingin microgrid[C]// 2019 The 11th International Conference on Applied Energy. Västerås, Sweden: Elsevier, 2019. |
[15] | 刘聪, 周京阳, SHAHIDEHPOUR M, 等. 市场环境下输配电系统一体化分布式交易优化方法[J]. 电力系统自动化, 2019, 43(21):103-110. |
LIU Cong, ZHOU Jingyang, SHAHIDEHPOUR Mohammad, et al. Optimization method for decentral transaction of integrated transmission and distribution system in market environment[J]. Automation of Electric Power Systems, 2019, 43(21):103-110. | |
[16] | WANG D, SU P F, YANG Q. A novel pricing scheme for peer-to-peer energy trading based on evaluation mechanism in microgrid[C]// 2019 IEEE Innovative Smart Grid Technologies-Asia. Chengdu, China: IEEE, 2019: 4318-4322. |
[17] | XU S Y, CHEN M Y, WADE N, et al. Reliability evaluation of electric power system containing distribution generation[C]// Advanced Materials Research, 2011, 389-390:3472-3478. |
[18] | 潘晓杰, 徐友平, 朱成亮, 等. 基于深度学习的多输入特征融合的暂态电压稳定性评估方法[J]. 电网与清洁能源, 2021, 37(2):79-84. |
PAN Xiaojie, XU Youping, ZHU Chengliang, et al. Transient voltage stability evaluation method based on multi-input feature fusion of deep learning[J]. Power System and Clean Energy, 2021, 37(2):79-84. | |
[19] | 侯磊, 杨欣可, 沙云鹏, 等. 新型多端口电能路由器关键技术研究[J]. 信息技术, 2021, 45(1):48-52. |
HOU Lei, YANG Xinke, SHA Yunpeng, et al. Key technologies of new multi-port power router[J]. Information Technology, 2021, 45(1):48-52. | |
[20] | YANG Q, WANG H, WANG T T, et al. Blockchain-based decentralized energy management platform for residential distributed energy resources in a virtual power plant[J]. Applied Energy, 2021, 294:117026. |
[21] | 曹清山. 售电市场放开环境下基于多属性决策的电力客户经济性评估和选择研究[D]. 杭州: 浙江大学, 2018. |
CAO Qingshan. Multi-attribute decision making model for customer economic evaluation and selection in opening electricity market[D]. Hangzhou: Zhejiang University, 2018. | |
[22] | 中华人民共和国国家发展和改革委员会. 国家能源局关于开展分布式发电市场化交易试点的通知[EB/OL]. (2017-10-31) [2021-09-10]. http://zfxxgk.nea.gov.cn/auto87/201711/t20171113_3055.htm . |
National Development and Reform Commission. Notice of the national development and reform commission and the national energy administration on launching the pilot of market-oriented transaction of distributed generation[EB/OL]. (2017-10-31) [2021-09-10]. http://zfxxgk.nea.gov.cn/auto87/201711/t20171113_3055.htm . | |
[23] | 贾清泉, 宋家骅, 兰华, 等. 电能质量及其模糊方法评价[J]. 电网技术, 2000, 24(6):46-49. |
JIA Qingquan, SONG Jiahua, LAN Hua, et al. Quality of electricity commodity and its fuzzy evaluation[J]. Power System Technology, 2000, 24(6):46-49. | |
[24] | 李世林, 郭汀, 刘亚芳, 等. 电能质量供电电压允许偏差[S]. 北京:中华人民共和国国家质量监督检验检疫总局, 2003. |
LI Shilin, GUO Ting, LIU Yafang, et al. Quality of electric energy supply admissible deviation of supply voltage[S]. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, 2003. | |
[25] | 曲涛, 任元, 林海雪, 等. 电能质量公用电网谐波[S]. 北京: 国家技术监督局, 1993. |
QU Tao, REN Yuan, LIN Haixue, et al. Power quality harmonics in public power grid[S]. Beijing: State Bureau of Technical Supervision, 1993. | |
[26] | 杨小彬, 李和明, 尹忠东, 等. 基于层次分析法的配电网能效指标体系[J]. 电力系统自动化, 2013, 37(21):146-150. |
YANG Xiaobin, LI Heming, YIN Zhongdong, et al. Energy efficiency index system for distribution network based on analytic hierarchy process[J]. Automation of Electric Power Systems, 2013, 37(21):146-150. | |
[27] | 张尚, 王涛, 顾雪平. 基于直觉模糊层次分析法的电网运行状态综合评估[J]. 电力系统自动化, 2016, 40(4):41-49. |
ZHANG Shang, WANG Tao, GU Xueping. Synthetic evaluation of power grid operating states based on intuitionistic fuzzy analytic hierarchy process[J]. Automation of Electric Power Systems, 2016, 40(4):41-49. | |
[28] | 李蕊, 李跃, 徐浩, 等. 基于层次分析法和专家经验的重要电力用户典型供电模式评估[J]. 电网技术, 2014, 38(9):2336-2341. |
LI Rui, LI Yue, XU Hao, et al. Assessment on typical power supply mode for important power consumers based on analytical hierarchy process and expert experience[J]. Power System Technology, 2014, 38(9):2336-2341. | |
[29] | XUE S, WU Z C, ZHANG H, et al. Evaluation model of key driving factors for different types of demand side distributed power resources to participate in market transactions[J]. IOP Conference Series: Earth and Environmental Science, 2021, 829(1):012009. |
[30] | 欧阳森, 石怡理. 改进熵权法及其在电能质量评估中的应用[J]. 电力系统自动化, 2013, 37(21):156-159. |
OUYANG Sen, SHI Yili. A new improved entropy method and its application in power quality evaluation[J]. Automation of Electric Power Systems, 2013, 37(21):156-159. | |
[31] | 商立群, 王守鹏. 改进主成分分析法在火电机组综合评价中的应用[J]. 电网技术, 2014, 38(7):1928-1933. |
SHANG Liqun, WANG Shoupeng. Application of improved principal component analysis in comprehensive assessment on thermal power generation units[J]. Power System Technology, 2014, 38(7):1928-1933. | |
[32] | DONG J, WANG D X, LIU D R, et al. Operation health assessment of power market based on improved matter-element extension cloud model[J]. Sustainability, 2019, 11(19):5470. |
[33] | SHENG J M, CHEN T Y, JIN W, et al. Selection of cost allocation methods for power grid enterprises based on entropy weight method[J]. Journal of Physics: Conference Series, 2021, 1881(2):022063. |
[34] | 施建华, 荆朝霞, 陈达鹏. 广东电力市场评价指标与方法模型研究[J]. 广东电力, 2020, 33(8):111-119. |
SHI Jianhua, JING Zhaoxia, CHEN Dapeng. Research on evaluation indexs and method model of Guangdong power market[J]. Guangdong Electric Power, 2020, 33(8):111-119. | |
[35] | 李涛, 王盛煜. 基于灰色关联度和模糊综合评价法的我国电力市场交易评价体系研究[J]. 工业技术经济, 2018, 37(9):130-137. |
LI Tao, WANG Shengyu. Research on evaluation system of electricity market transaction in China based on gray relational grade analysis and fuzzy analytic hierarchy process[J]. Journal of Industrial Technological Economics, 2018, 37(9):130-137. | |
[36] | 施建华. 广东电力市场评价指标与方法模型研究[D]. 广州: 华南理工大学, 2020. |
SHI Jianhua. Research on evaluation indexes and methods of Guangdong power market[D]. Guangzhou: South China University of Technology, 2020. | |
[37] | NGUYEN P H, TSAI J F, VENKATA AJAY KUMAR G, et al. Stock investment of agriculture companies in the Vietnam stock exchange market: An AHP integrated with GRA-TOPSIS-MOORA approaches[J]. The Journal of Asian Finance, Economics and Business, 2020, 7(7):113-121. |
[38] | HE J, ZHAO W, HUANG H Z, et al. The evaluation system of power market monitoring based on AHP and the entropy method[J]. IOP Conference Series: Earth and Environmental Science, 2021, 831(1):012027. |
[39] | 何涛. 适用于分布式能源交易场景的区块链关键算法与技术研究[D]. 成都: 电子科技大学, 2020. |
HE Tao. Research on key algorithms and technologies of blockchain for distributed energy trading scenarios[D]. Chengdu: University of Electronic Science and Technology of China, 2020. | |
[40] | SHALUKHO A V, LIPUZHIN I A, VOROSHILOV A A. Power quality in microgrids with distributed generation[C]// 2019 International Ural Conference on Electrical Power Engineering. Chelyabinsk, Russia: IEEE, 2019: 54-58. |
[41] | ABDULGALIL M A, KHALID M, ALSHEHRI J. Microgrid reliability evaluation using distributed energy storage systems[C]// 2019 IEEE Innovative Smart Grid Technologies-Asia. Chengdu, China: IEEE, 2019: 2837-2841. |
[42] | RAVADA B R, TUMMURU N R, ANDE B N L. Photovoltaic-wind and hybrid energy storage integrated multisource converter configuration-based grid-interactive microgrid[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5):4004-4013. |
[43] | SHENG H Z, WANG C F, LI B W, et al. Multi-timescale active distribution network scheduling considering demand response and user comprehensive satisfaction[J]. IEEE Transactions on Industry Applications, 2021, 57(3):1995-2005. |
[44] | 陈玮. 新能源背景下的主动配电网故障恢复关键技术研究[D]. 杭州: 浙江大学, 2020. |
CHEN Wei. Research on service restoration of active distribution networks under the background of renewable energy[D]. Hangzhou: Zhejiang University, 2020. | |
[45] | MARTORANA F, BONOMOLO M, LEONE G, et al. Solar-assisted heat pumps systems for domestic hot water production in small energy communities[J]. Solar Energy, 2021, 217:113-133. |
[46] | ZHAO H, ZHAO J H, QIU J, et al. Data-driven risk preference analysis in day-ahead electricity market[J]. IEEE Transactions on Smart Grid, 2021, 12(3):2508-2517. |
[47] | STRINGER N, HAGHDADI N, BRUCE A, et al. Fair consumer outcomes in the balance: Data driven analysis of distributed PV curtailment[J]. Renewable Energy, 2021, 173:972-986. |
[1] | 陆秋瑜, 于珍, 杨银国, 李力. 考虑源荷功率不确定性的海上风力发电多微网两阶段优化调度[J]. 上海交通大学学报, 2022, 56(10): 1308-1316. |
[2] | 李恒杰, 朱江皓, 傅晓飞, 方陈, 梁达明, 周云. 基于集成学习的电动汽车充电站超短期负荷预测[J]. 上海交通大学学报, 2022, 56(8): 1004-1013. |
[3] | 李幸芝, 韩蓓, 李国杰, 汪可友, 徐晋. 分布式绿色能源碳交易机制及碳数据管理的挑战[J]. 上海交通大学学报, 2022, 56(8): 977-993. |
[4] | 张鹏飞, 徐静怡, 郭巍, 吴蔚, 钟晨, 魏文栋. 粤港澳大湾区电力系统低碳转型[J]. 上海交通大学学报, 2022, 56(3): 293-302. |
[5] | 曾博, 穆宏伟, 董厚琦, 曾鸣. 考虑5G基站低碳赋能的主动配电网优化运行[J]. 上海交通大学学报, 2022, 56(3): 279-292. |
[6] | 孙欣, 严佳嘉, 谢敬东, 孙波. “碳中和”目标下电气互联系统有功-无功协同优化模型[J]. 上海交通大学学报, 2021, 55(12): 1554-1566. |
[7] | 陈文溆乐, 向月, 彭光博, 刘友波, 刘俊勇. “双碳”目标下电力系统供给侧形态发展系统动力学建模与分析[J]. 上海交通大学学报, 2021, 55(12): 1567-1576. |
[8] | 赵景茜, 米翰宁, 程昊文, 陈思捷. 考虑岸电负荷弹性的港区综合能源系统规划模型与方法[J]. 上海交通大学学报, 2021, 55(12): 1577-1585. |
[9] | 吕祥梅, 刘天琪, 刘绚, 何川, 南璐, 曾红. 考虑高比例新能源消纳的多能源园区日前低碳经济调度[J]. 上海交通大学学报, 2021, 55(12): 1586-1597. |
[10] | 刘明涛, 谢俊, 张秋艳, 包长玉, 常逸凡, 段佳南, 施雄华, 鲍永. 碳交易环境下含风电电力系统短期生产模拟[J]. 上海交通大学学报, 2021, 55(12): 1598-1607. |
[11] | 蔡晖, 高伯阳, 祁万春, 吴熙, 谢珍建, 黄俊辉. “双碳”背景下线间潮流控制器多目标协调控制策略[J]. 上海交通大学学报, 2021, 55(12): 1608-1618. |
[12] | 周士超, 刘晓林, 熊展, 王旭, 蒋传文, 张沈习. 考虑韧性提升的交直流配电网线路加固和储能配置策略[J]. 上海交通大学学报, 2021, 55(12): 1619-1630. |
[13] | 魏利屾, 冯宇昂, 方家琨, 艾小猛, 文劲宇. 现货市场环境下新能源并网接入对市场出清的影响[J]. 上海交通大学学报, 2021, 55(12): 1631-1639. |
[14] | 胡宏, 陈新仪, 王利峰, 滕晓毕, 严正, 徐潇源, 王晗. 面向新型电力系统的华东电网运行备用体系构建方法[J]. 上海交通大学学报, 2021, 55(12): 1640-1649. |
[15] | 江婷, 邓晖, 陆承宇, 王旭, 蒋传文, 龚开. 电能量和旋转备用市场下电-热综合能源系统低碳优化运行[J]. 上海交通大学学报, 2021, 55(12): 1650-1662. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||