上海交通大学学报 ›› 2018, Vol. 52 ›› Issue (10): 1142-1154.doi: 10.16183/j.cnki.jsjtu.2018.10.002
李军朋1,华长春1,关新平2
发布日期:
2025-07-02
作者简介:
李军朋(1987-),男,河北省石家庄市人,副教授,主要从事复杂工业过程建模优化控制研究. E-MAIL: jpl@ysu.edu.cn
基金资助:
LI Junpeng,HUA Changchun,GUAN Xinping
Published:
2025-07-02
摘要: 高炉冶炼过程具有强非线性、大时滞和欠调节的特性,其内部为多相多场耦合的复杂动态系统,仅单一地从机理角度构建高炉模型或简单地利用高炉数据建模很难达到较好的效果.为此,利用新型高炉传感器所测数据,并结合高炉冶炼机理、运行数据和专家经验构建了几个高炉局部模型.几个模型都以高炉实际数据进行了测试,并且成果已运行于柳钢2号高炉之上.
中图分类号:
李军朋1,华长春1,关新平2. 基于机理、数据和知识的大型高炉冶炼过程建模研究[J]. 上海交通大学学报, 2018, 52(10): 1142-1154.
LI Junpeng,HUA Changchun,GUAN Xinping. Modeling Research for Blast Furnace Smelting Process Based on Smelting Mechanism, Operation Data and Expert Knowledge[J]. Journal of Shanghai Jiao Tong University, 2018, 52(10): 1142-1154.
[1]张玉柱, 胡长庆. 炼铁节能与工艺计算[M]. 北京: 冶金工业出版社, 2002. ZHANG Yuzhu, HU Changqing. Energy saving and process calculation of ironmaking[M]. Beijing: Metallurgical Industry Press, 2002. [2]王筱留. 钢铁冶金学(炼铁部分)[M]. 2版.北京: 冶金工业出版社, 2000. WANG Xiaoliu. Metallurgy of iron and steel (ironmaking part) [M]. 2nd ed. Beijing: Metallurgical Industry Press, 2000. [3]刘祥官, 刘芳. 高炉炼铁过程优化与智能控制系统[M]. 北京: 冶金工业出版社, 2003. LIU Xiangguan, LIU Fang. Optimization of ironmaking process and intelligent control system for blast furnace[M]. Beijing: Metallurgical Industry Press, 2003. [4]郜传厚, 刘祥官. 高炉冶炼过程的混沌性辨识. I. 饱和关联维数的确定[J]. 金属学报, 2004, 40(4): 347-350. GAO Chuanhou, LIU Xiangguan. Chaotic identification of BF ironmaking process. I. The calculation of Saturated correlative dimension[J]. Acta Metallurgica Sinica, 2004, 40(4): 347-350. [5]罗世华, 曾九孙. 基于多分辨分析的高炉铁水含硅量波动多重分形辨识[J]. 物理学报, 2009, 58(1): 150-157. LUO Shihua, ZENG Jiusun. Multi-fractal identification of the fluctuation of silicon content in blast furnace hot metal based on multi-resolution analysis[J]. Acta Physica Sinica, 2009, 58(1): 150-157. [6]李爱莲, 赵永明, 崔桂梅. 基于数据预处理与智能优化的高炉铁液温度预测模型的研究[J]. 铸造技术, 2015, 36(2): 450-454. LI Ailian, ZHAO Yongming, CUI Guimei. Study on temperature prediction model of blast furnace hot metal based on data preprocessing and intelligent optimization[J]. Foundry Technology, 2015, 36(2): 450-454. [7]毕学工. 高炉过程数学模型及计算机控制[M]. 北京: 冶金工业出版社, 1996. BI Xuegong. The mathematical model and computer control of the blast furnace process[M]. Beijing: Metallurgical Industry Press, 1996. [8]DE CASTRO J A, NOGAMI H, YAGI J. Transient mathematical model of blast furnace based on multi-fluid concept, with application to high PCI operation[J]. ISIJ International, 2000, 40(7): 637-646. [9]NOGAMI H, CHU M, YAGI J. Multi-dimensional transient mathematical simulator of blast furnace process based on multi-fluid and kinetic theories[J]. Computers and Chemical Engineering, 2005, 29(11/12): 2438-2448. [10]BAMBAUER F, WIRTZ S, SCHERER V, et al. Transient DEM-CFD simulation of solid and fluid flow in a three dimensional blast furnace model[J]. Powder Technology, 2018, 334: 53-64. [11]PANDIT S M, CLUM J A, WU S M. Modeling, prediction and control of blast furnace operation from observed data by multivariate time series[C]∥Proceedings of the 34th Ironmaking Conference. Toronto, Canada: AIME, 1975: 403-416. [12]姬田冒孝, 西尾通卓, 西川洁, 等. 统计制御理论(ARMA法)の高炉炉热制御べの适用[J].钢铁, 1980, 66(4): 96. ADACHI Putian, TOSHIKI Nishio, NORIKO Nishikawa, et al. On the blast furnace operation control using statistical method (Ironmaking) [J]. Iron and Steel, 1980, 66(4): 96. [13]VANHATALO E. Multivariate process monitoring of an experimental blast furnace[J]. Quality and Reliability Engineering International, 2010, 26(5): 495-508. [14]BHATTACHARYA T. Prediction of silicon content in blast furnace hot metal using partial least squares (PLS) [J]. ISIJ International, 2005, 45(12): 1943-1945. [15]CHEN W, WANG B X, HAN H L. Prediction and control for silicon content in pig iron of blast furnace by integrating artificial neural network with genetic algorithm[J]. Ironmaking and Steelmaking, 2009, 37(6): 458-463. [16]SAXN H, PETTERSSON F, GUNTURU K. Evolving nonlinear time-series models of the hot metal silicon content in the blast furnace[J]. Materials and Manufacturing Processes, 2007, 22(5): 577-584. [17]JIAN L, GAO C, LI L, et al. Application of least squares support vector machines to predict the silicon content in blast furnace hot metal[J]. ISIJ International, 2008, 48(11): 1659-1661. [18]SAXN H, GAO C, GAO Z. Data-driven time discrete models for dynamic prediction of the hot metal silicon content in the blast furnace—A review[J]. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2213-2225. [19]GAO C, GE Q, JIAN L. Rule extraction from fuzzy-based blast furnace SVM multiclassifier for decision-making[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(3): 586-596. [20]刘学艺, 刘祥官, 王文慧. 贝叶斯网络在高炉铁水硅含量预测中的应用[J]. 钢铁, 2005, 40(3): 17-20. LIU Xueyi, LIU Xiangguan, WANG Wenhui. Application of Bayesian network to predicting silicon content in hot metal[J]. Iron and Steel, 2005, 40(3): 17-20. [21]JIAN L, GAO C. Binary coding SVMs for the multiclass problem of blast furnace system[J]. IEEE Transactions on Industrial Electronics, 2013, 60(9): 3846-3856. [22]GAO C, JIAN L, LUO S. Modeling of the thermal state change of blast furnace hearth with support vector machines[J]. IEEE Transactions on Industrial Electronics, 2012, 59(2): 1134-1145. [24]NAITO M, TAKEDA K, MATSUI Y. Ironmaking technology for the last 100 years: Deployment to advanced technologies from introduction of technological know-how, and evolution to next-generation process[J]. ISIJ International, 2015, 55(1): 7-35. [25]BI X, TORSSELL K, WIJK O. Simulation of the blast furnace process by a mathematical model[J]. ISIJ International, 1992, 32(4): 470-480. |
[1] | 王鸿鑫, 徐德刚, 周楷文, 李林文, 温新. 数据驱动的流场稀疏数据建模[J]. 上海交通大学学报, 2025, 59(5): 684-690. |
[2] | 潘美琪, 贺兴. 基于零样本学习的风力机故障诊断方法[J]. 上海交通大学学报, 2025, 59(5): 561-568. |
[3] | . 用时间卷积网络预测关键蛋白质的深度学习框架[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 510-520. |
[4] | 陈以恒, 张龙, 赵青松, 杨岚青, 薛广涛. 基于窄带物联网的分布式控制技术研究[J]. 空天防御, 2025, 8(2): 142-152. |
[5] | . 重复零和博弈中对无遗憾对手进行盘剥的研究[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 385-398. |
[6] | . 面向工业异构数据匹配的联合迭代匹配方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 375-384. |
[7] | . 基于双流自编码器的无监督动作识别[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 330-336. |
[8] | . 基于数据驱动的永磁同步电机控制系统模型预测控制方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 270-279. |
[9] | 韩青原. 港口自动货运环境感知技术现状综述[J]. 海洋工程装备与技术, 2025, 12(1): 79-86. |
[10] | 肖常胜, 周晓军, 祝米鑫. 生产调度与可靠性耦合的变工况再制造系统维护建模[J]. 上海交通大学学报, 2024, 58(8): 1211-1220. |
[11] | 胡志强, 刘鸣飞, 李琦, 李心雨, 鲍劲松. 基于多源异构数据的风机多模态装配工艺知识图谱建模[J]. 上海交通大学学报, 2024, 58(8): 1249-1263. |
[12] | 刘舒, 周敏, 高元海, 徐潇源, 严正. 融合拓扑信息的配电网电压-功率灵敏度估计数据驱动方法[J]. 上海交通大学学报, 2024, 58(6): 855-862. |
[13] | 李振坤, 于秋阳, 魏砚军, 田书欣. 基于CPSS的综合能源微网群参与调频辅助服务成本建模分析[J]. 上海交通大学学报, 2024, 58(6): 893-903. |
[14] | 李明爱1, 2, 魏丽娜1. 基于朴素卷积神经网络和线性插值的运动想像分类[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 958-966. |
[15] | 李逸豪, 李汶洁, 蔡晟, 陈国铃. 基于数字孪生的空间电源产品测试系统建设与应用[J]. 空天防御, 2024, 7(5): 120-126. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 98
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 45
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||