[1]MEINDL J, CHEN Q, DAVIS J. Limits on silicon nanoelectronics for terascale integration [J]. Science, 2001, 293: 2044-2049.
[2]ITRS. International technology roadmap for semiconductors (2013 ed) [EB/OL]. [2018-04-28]. http:∥www.itrs2.net.
[3]毛军发, 唐旻. 高速集成电路互连[M]. 北京: 科学出版社, 2017.
MAO Junfa, TANG Min. High-speed integrated circuits interconnects [M]. Beijing: Science Press, 2017.
[4]RYU C, KWON K W, LOKE A L S, et al. Microstructure and reliability of copper interconnects [J]. IEEE Transactions on Electron Devices, 1999, 46(6): 1113-1120.
[5]IM S, SRIVASTAVA N, BANERJEE K, et al. Scaling analysis of multilevel interconnect temperatures for high-performance ICs [J]. IEEE Transactions on Electron Devices, 2005, 52(12): 2710-2719.
[6]LI H, XU C, BANERJEE K. Carbon nanomaterials: The ideal interconnect technology for next-generation ICs [J]. IEEE Design & Test of Computers, 2010, 27(4): 20-31.
[7]XU C, LI H, BANERJEE K. Modeling, analysis, and design of graphene nano-ribbon interconnects [J]. IEEE Transactions on Electron Devices, 2009, 56(8): 1567-1578.
[8]NAEEMI A, MEINDL J D. Design and performance modeling for single-walled carbon nanotubes as local, semiglobal, and global interconnects in gigascale integrated systems [J]. IEEE Transactions on Electron Devices, 2007, 54(1): 26-37.
[9]PU S N, YIN W Y, MAO J F, et al. Crosstalk prediction of single-and double-walled carbon-nanotube (SWCNT/DWCNT) bundle interconnects [J]. IEEE Transactions on Electron Devices, 2009, 56(4): 560-568.
[10]JANG J E, CHA S N, CHOI Y, et al. Nanoscale capacitors based on metal-insulator-carbon nanotube-metal structures [J]. Applied Physics Letters, 2005, 87(26): 263103.
[11]LI H, XU C, SRIVASTAVA N, et al. Carbon nanomaterials for next-generation interconnects and passives: Physics, status and prospects [J]. IEEE Transactions on Electron Devices, 2009, 56(9): 1799-1821.
[12]TANS S J, VERSCHUEREN A R M, DEKKER C. Room-temperature transistor based on a single carbon nanotube [J]. Nature, 1998, 393: 49-52.
[13]LIN A, PATIL N, RYU K, et al. Threshold voltage and on-off ratio tuning for multiple-tube carbon nanotube FETs [J]. IEEE Transactions on Nanotechnology, 2009, 8(1): 4-9.
[14]YU Q, LIAN J, SIRIPONGLERT S, et al. Graphene segregated on Ni surfaces and transferred to insulators [J]. Applied Physics Letters, 2008, 93: 113103.
[15]KANG J, SARKAR D, KHATAMI Y, et al. Proposal for all-graphene monolithic logic circuits [J]. Applied Physics Letters, 2013, 103: 083113.
[16]DIJON J, OKUNO H, FAYOLLE M, et al. Ultra-high density carbon nanotubes on Al-Cu for advanced vias [C]∥International Electron Devices Meeting. San Francisco, CA, USA: IEEE, 2010: 1-4.
[17]BURKE P J. Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes [J]. IEEE Transactions on Nanotechnology, 2002, 99(3): 129-144.
[18]SRIVASTAVA N, LI H, KREUPL F, et al. On the applicability of single-walled carbon nanotubes as VLSI interconnects [J]. IEEE Transactions on Nanotechnology, 2009, 8(4): 542-559.
[19]LI H, BANERJEE K. High-frequency effects in carbon nanotube interconnects and implications for on-chip inductor design [C]∥International Electron Devices Meeting. San Francisco, CA, USA: IEEE, 2008: 1-4.
[20]NAEEMI A, MEINDL J D. Compact physical models for multiwall carbon-nanotube interconnects [J]. IEEE Electron Device Letters, 2006, 27(5): 338-340.
[21]LI H, YIN W Y, BANERJEE K, et al. Circuit mo-deling and performance analysis of multi-walled carbon nanotube interconnects [J]. IEEE Transactions on Electron Devices, 2008, 55(6): 1328-1337.
[22]SARTO M S, TAMBURRANO A. Single-conductor transmission-line model of multiwall carbon nanotubes [J]. IEEE Transactions on Nanotechnology, 2010, 9(1): 82-92.
[23]TANG M, MAO J F. Modeling and fast simulation of multiwalled carbon nanotube interconnects [J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(2): 232-240.
[24]李宏. 碳纳米管在纳米集成电路互连线中的应用研究[D]. 上海: 上海交通大学, 2008.
LI Hong. On the applicability of carbon nanotubes as interconnect in nanoscale integrated circuits [D]. Shanghai: Shanghai Jiao Tong University, 2008.
[25]KAWABATA A, SATO S, NOZUE T, et al. Robustness of CNT via interconnect fabricated by low temperature process over a high-density current [C]∥International Interconnect Technology Conference. Burlingame, CA, USA: IEEE, 2008: 237-239.
[26]LI H, SRIVASTAVA N, MAO J F, et al. Carbon nanotube vias: A reality check [C]∥International Electron Devices Meeting. Washington, DC, USA: IEEE, 2007: 207-210.
[27]LI H, SRIVASTAVA N, MAO J F, et al. Carbon nanotube vias: Does ballistic electron-phonon transport imply improved performance and reliability?[J]. IEEE Transactions on Electron Devices, 2011, 58(8): 2689-2701.
[28]LIU Y F, ZHAO W S, ZHENG Y, et al. Electrical modeling of three-dimensional carbon-based heterogeneous interconnects [J]. IEEE Transactions on Nanotechnology, 2014, 13(3): 488-495.
[29]LI N, MAO J F, ZHAO W S, et al. Electrothermal cosimulation of 3-D carbon-based heterogeneous interconnects [J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6(4): 518-526. |