上海交通大学学报(自然版) ›› 2016, Vol. 50 ›› Issue (05): 814-818.
• 数理科学和化学 • 上一篇
金瑾1,2,赵浩岚3
收稿日期:
2015-09-21
出版日期:
2016-05-28
发布日期:
2016-05-28
基金资助:
JIN Jin1,2,ZHAO Haolan3
Received:
2015-09-21
Online:
2016-05-28
Published:
2016-05-28
摘要: 摘要: 利用亚纯函数的Nevanlinna值分布理论,研究了超越亚纯函数差分的值分布问题,得到了2个超越亚纯函数的值分布结果,推广和改进了一些文献中的结论.
中图分类号:
金瑾1,2,赵浩岚3. 超越亚纯函数差分的值分布[J]. 上海交通大学学报(自然版), 2016, 50(05): 814-818.
JIN Jin1,2,ZHAO Haolan3. Value Distribution of Difference of Transcendental Meromorphic Function in Complex Domain[J]. Journal of Shanghai Jiaotong University, 2016, 50(05): 814-818.
[1]HAYMAN W K.Picardvalue of meromorphic function and their derivatives[J]. Western Historical Quarterly,1959,70(1):942. [2]HAYMAN W K.Research problems in function thery[M]. London: Athlone Prees,1967. [3]MUES E.Uber ein problem von Hayman[J]. Mathematische Zeitschrift, 1979,164(3):239259. [4]BERGWEILER W, Eremenko A. On the singularities of the inverse to a of meromorphic function of finite order[J]. Revista Matematica Iberoamericana,1999,11(2):355373. [5]CHEN H H,FANG M L.On the value distribution of fnf′[J].Science in China,1995,38A:789798. [6]LIU K, QI X G. Meromorphic solutions of qshifl difference equations[J]. Annales Polonici Mathematici,2011,101(3):215225. [7]Halburd R G,Korhonen R J. Difference analogue of the lemma on the logarithmic derivative with applications to difference equations[J]. Journal of Mathematical Analysis & Applications, 2005,314(2):477487. [8]Chiang Y M,Feng S J.On the Nevanlinna characteristic of f(z+η) and difference equations in the complex plane[J]. Ramanujan Journal,2008,16(1):105129. [9]张然然,陈宗煊.亚纯函数差分多项式的值分布[J].中国科学:数学,2012,42(11):11151130. ZHANG Ranran, CHEN Zongxuan. Value distribution of difference polynomials of meromorphic Functions[J]. Sci Sin Math, 2012, 42(11): 11151130. [10]金瑾.关于亚纯函数φ(z)f(z)f(k)(z)nP[f]的值分布[J].应用数学,2013,26(3): 499505. JIN Jin.The value distribution of the meromorphic function φ(z)fn(z)P[f][J]. Mathematica Applicata, 2013,26(3): 499505. [11]金瑾.关于亚纯函数φ(z)fn(z)f(k)z的值分布[J].纯粹数学与应用数学, 2012,28(6): 711718. JIN Jin. The value distribution of the meromorphic function φ(z)fn(z)f(k)(z)[J]. Pure and Applied Mathematics,2012,28(6):711718. [12]金瑾.关于一类高阶齐次线性微分方程解的增长性[J].中山大学报(自然科学版),2013,52(1):5155. JIN Jin. On the growth of solutions of higher order homogeneous linear differential equations[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2013,52(1):5155. [13]金瑾.高阶复微分方程解的超级的角域分布[J].数学的实践与认识,2008,38(12):178187. JIN Jin. The angular distribution of the solutions of higher order dif ferential Equation[J]. Mathematics in Practice and Theory, 2008,38(12):178187. [14]金瑾,武玲玲,樊艺. 高阶非线性微分方程组的亚纯允许解[J]. 东北师范大学学报(自然科学版),2015,47(1):2225. JIN Jin, WU Lingling, FAN Yi. Meromorphic admissible solution of systems of higher order nonlinear complex differential eguations[J]. Journal of Northeast Normal University(Natural Science Edition), 2015,47(1):2225. [15]金瑾.单位圆内高阶齐次线性微分方程解与小函数的关系[J].应用数学学报,2014,37(4):754764. JIN Jin.The retween solutions of higher order homogeneous linear differential equations and small functions in the unit dise[J]. Acta Mathematicae Applicatae Sinica, 2014,37(4):754764. [16]金瑾.一类高阶齐次线性微分方程的亚纯解与其小函数的复振荡[J].工程数学学报,2014,31(3):399405. JIN Jin. On the complex oscillation of meromorphic solutions of a class of higher order homogeneous linear differential equations and functions of small growth[J]. Chinese Journal of Engineering Mathematics, 2014,31(3):399405. [17]金瑾,李泽清.一类高阶非线性微分方程组的亚纯允许解[J].应用数学, 2014,27(2):292298. JIN Jin,LI Zeqing. Meromorphic admissible solution of systems of higher order non-linear differential equations [J]. Mathematica Applicata, 2014,27(2):292298. [18]金瑾,李里.关于亚纯函数φ(z)f(z)M[f]的值分布[J].华中师范大学学报(自然科学版),2015,49(4):483487. JIN Jin,LI Li.The value distribution of the meromorphic function φ(z)f(z)M[f][J].Journal of Central China Normal University(Natural Sciences), 2015,49(4):483487. [19]金瑾.高阶线性微分方程解与其小函数的增长性[J].上海交通大学学报,2013,47(7):11551159. JIN Jin.Growth of solutions of higher order linear[J]. Journal of Shanghai Jiaotong University, 2013,47(7):11551159. [20]王琼燕,叶亚盛.亚纯函数差分多项式的值分布和唯一性[J].数学年刊,2014,35A(6):675684. WANG Qiongyan,YE Yasheng.Value distribution and uniqueness of difference polynomials of meromorphic function[J]. Chinese Annals of Mathematics, 2014,35A(6):675684. |
[1] | 胡安峰, 陈俞超, 肖志荣, 谢森林, 龚昭祺. 考虑自重应力的隧道周围土体非线性固结特性分析[J]. 上海交通大学学报, 2025, 59(4): 503-512. |
[2] | 蒋瑞民, 周鑫杰, 赵斌, 毕千, 朱亚龙. 高速飞行器姿态控制系统的协方差分析方法[J]. 空天防御, 2025, 8(2): 44-49. |
[3] | . 基于改进差分进化极限学习机的锂离子电池健康状态估计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 252-261. |
[4] | 李博群, 孙志锋. 基于群体划分的冠状病毒群体免疫优化算法[J]. 上海交通大学学报, 2024, 58(4): 555-564. |
[5] | LONARE Savita1,2, BHRAMARAMBA Ravi2. 基于图卷积网络的联邦式隐私保护交通预测方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 509-517. |
[6] | 于生,李向舜. 识别稳态与瞬态[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 261-270. |
[7] | 刘达琳, 陶韬, 曹勇, 周岱, 韩兆龙. 基于WRF-LES模式的大气边界层近地风场精细化模拟研究[J]. 上海交通大学学报, 2024, 58(2): 220-231. |
[8] | 朱浩然, 陈自强, 杨德庆. 基于差分热伏安法和高斯过程回归的锂离子电池健康状态估计[J]. 上海交通大学学报, 2024, 58(12): 1925-1934. |
[9] | 胡安峰, 龚昭祺, 肖志荣, 陈缘. 隧道周围饱和软土二维非线性固结分析[J]. 上海交通大学学报, 2023, 57(12): 1631-1638. |
[10] | 赵勇, 苏丹. 基于4种长短时记忆神经网络组合模型的畸形波预报[J]. 上海交通大学学报, 2022, 56(4): 516-522. |
[11] | 冯国辉, 徐兴, 侯世磊, 范润东, 杨开放, 管凌霄, 徐长节. 基于Kerr地基模型的基坑开挖引起下卧既有隧道受力变形[J]. 上海交通大学学报, 2022, 56(4): 474-485. |
[12] | 袁心怡, 苏焱, 刘祖源. 基于高精度Boussinesq方程的三维浅水晃荡数值研究[J]. 上海交通大学学报, 2021, 55(5): 521-526. |
[13] | 白旭, 杨苏杰. 过冷度影响海水结冰形状与速度的相场模拟[J]. 上海交通大学学报, 2021, 55(5): 513-520. |
[14] | 陈广锋, 余立潮. 基于级联的改进差分进化算法的仓储多订单分批优化[J]. 上海交通大学学报, 2021, 55(10): 1291-1302. |
[15] | 张刚, 赵畅畅, 张天骐. 基于时间反转的多用户差分混沌键控方案[J]. 上海交通大学学报, 2020, 54(4): 352-358. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 242
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1020
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||