上海交通大学学报

• •    

透平叶片温度场快速预测的数据驱动模型降阶方法(网络首发)

  

  1. 1.浙江大学材料科学与工程学院;2.华电电力科学研究院有限公司;3.上海交通大学机械与动力工程学院
  • 基金资助:
    国家重点研发计划(2023YFB3812700); 中国华电集团科技项目(CHDKJ21-01-104)

Data-Driven Reduced-Order Model for Efficient Temperature Prediction of a Gas Turbine Blade

  1. (1. School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China; 2. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 3. Huadian Electric Power Research Institute Co., Ltd., Hangzhou 310030, China)

摘要: 透平叶片是燃气轮机关键的热端部件,在高温恶劣环境下运转。准确、快速预测叶片温度场对燃气轮机服役安全性、稳定性具有重要意义。本研究针对燃气轮机不同启动工况,建立透平叶片流热固耦合模型,开展数值模拟工作,形成透平叶片温度场数据集。结合神经网络与模型降阶技术,提出了一种透平叶片温度场快速预测方法。通过现场传感器数据,即可快速预测叶片温度场。结果表明:相比于流热固高保真数值模拟,提出的方法能够实现透平叶片温度场的毫秒级快速预测,且相对误差在12%以内,这为透平叶片三维温度场实时监测提供了可行的技术手段。

关键词: 透平叶片, 降阶模型, 神经网络, 温度场预测

Abstract: Turbine blades are key hot components of a gas turbine, which operates in high temperature and harsh environment. Accurate and efficient prediction of turbine blade temperature field is of great significance for gas turbine service safety and stability. In this study, a turbine blade fluid-thermal-solid coupling model was established for different start-up conditions of gas turbines, and numerical simulations were carried out to form a dataset of turbine blade temperature field. An efficient prediction method of turbine blade temperature field is proposed by combining neural network and model order reduction technique. The temperature field of the turbine blade can be fast predicted through on-site sensor data. The results show that compared with the fluid-thermal-solid high-fidelity numerical simulation, the proposed method is able to efficiently predict the temperature field of the turbine blade in milliseconds, and the relative error is less than 12%. This work provides a feasible approach for real-time monitoring of three-dimensional temperature field of turbine blades. 

Key words: turbine blade, reduced-order model, neural network, temperature prediction

中图分类号: