上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (2): 188-200.doi: 10.16183/j.cnki.jsjtu.2022.331

• 船舶海洋与建筑工程 • 上一篇    下一篇

基于深度学习的螺旋桨水动力性能快速预报方法

高楠, 胡安康, 侯立勋(), 常欣   

  1. 大连海事大学 船舶与海洋工程学院,辽宁 大连 116026
  • 收稿日期:2022-08-26 修回日期:2022-11-01 接受日期:2022-11-17 出版日期:2024-02-28 发布日期:2024-03-04
  • 通讯作者: 侯立勋,副教授;E-mail:07093129@163.com.
  • 作者简介:高 楠(1995-),博士生,从事螺旋桨水动力性能研究.
  • 基金资助:
    中国博士后科学基金会(2020M680935)

An Rapid Prediction Method for Propeller Hydrodynamic Performance Based on Deep Learning

GAO Nan, HU Ankang, HOU Lixun(), CHANG Xin   

  1. Naval Architecture and Ocean Engineering College, Dalian Maritime University, Dalian 116026, Liaoning, China
  • Received:2022-08-26 Revised:2022-11-01 Accepted:2022-11-17 Online:2024-02-28 Published:2024-03-04

摘要:

为实现螺旋桨水动力性能的快速、精确预报,基于改进的残差连接神经网络建立了一套螺旋桨水动力性能预报模型.残差连接方式大幅提高了模型深度,结合Inception结构从不同尺度同时提取数据特征,利用深度可分离式卷积减少模型参数,基于螺旋桨几何参数和模型试验结果构建训练深度神经网络所需的样本空间;提出一种改进的群体天牛须算法对模型的初始权重与阈值进行优化,进一步提高其预报精度.研究结果表明:改进的群体天牛须算法显著提高预报模型的精度并解决了过拟合问题,预报结果与试验值吻合良好,对数据集外螺旋桨的预测性能与CFD法基本一致.模型的普适性极佳且计算周期极短、效率高,满足实时、准确预报螺旋桨敞水性能的要求.

关键词: 螺旋桨, 水动力性能, 残差神经网络, Inception结构, 改进的群体天牛须搜索算法

Abstract:

In order to achieve rapid and accurate prediction of the hydrodynamic performance of propellers, a set of propeller hydrodynamic performance prediction model was established based on the improved residual connection network. The residual connection method greatly improves the depth of the model. In combination with the Inception structure to simultaneously extract data features from different scales, the depthwise separable convolution reduces the model parameters. The sample space for training the deep neural network is built based on the propeller geometric parameters and model test results. An improved beetle swarm antennae search algorithm is proposed to optimize the initial weights and thresholds of the model to further improve the prediction accuracy of the model. The research results indicate that the improved beetles swarm antennae algorithm significantly improves the accuracy of the model and solves the problem of overfitting of it. The prediction results of the model are in good agreement with the experimental values, and its prediction performance for the propellers which are not in the dataset is basically the same as that of the CFD method. The model has an excellent universality and its calculation period is extremely short, which can meet the requirements of real-time and accurate prediction of propeller open water performance.

Key words: propeller, hydrodynamic performance, residual neural network, Inception structure, the improved beetle swarm antennae search algorithm

中图分类号: