上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (11): 1707-1715.doi: 10.16183/j.cnki.jsjtu.2022.526
蔡骜1,2, 陈满泰1,2(), 左文康1,2, 段立平1,2, 赵金城1,2
收稿日期:
2022-12-19
修回日期:
2023-01-12
接受日期:
2023-02-13
出版日期:
2024-11-28
发布日期:
2024-12-02
通讯作者:
陈满泰,副教授,博士生导师;E-mail:作者简介:
蔡 骜(1996—),硕士研究生,主要从事高强钢低温力学性能研究.
基金资助:
CAI Ao1,2, CHEN Mantai1,2(), ZUO Wenkang1,2, DUAN Liping1,2, ZHAO Jincheng1,2
Received:
2022-12-19
Revised:
2023-01-12
Accepted:
2023-02-13
Online:
2024-11-28
Published:
2024-12-02
摘要:
在极地严寒地区工程中应用高强钢可节省用钢量,减少低温严酷环境下钢结构制作、运输和安装成本.为研究HG785高强钢在极地低温环境下的力学性能,对考虑2种厚度和5种低温环境的高强钢试样开展单轴拉伸试验.试验结果表明,极地低温环境下HG785高强钢的弹性模量、屈服强度和极限抗拉强度相较于其在25 ℃常温环境下有所提高,失效模式均为颈缩延性破坏并无脆断倾向.采用全子集法对试验结果进行回归分析,建立极地低温环境下高强钢力学性能指标预测模型,可指导高强钢在结构构件、节点与体系中的合理高效应用,为高强钢结构在极地低温地区服役与结构设计优化策略决策提供理论依据.
中图分类号:
蔡骜, 陈满泰, 左文康, 段立平, 赵金城. 高强度钢材低温力学性能试验研究与预测模型[J]. 上海交通大学学报, 2024, 58(11): 1707-1715.
CAI Ao, CHEN Mantai, ZUO Wenkang, DUAN Liping, ZHAO Jincheng. Experimental Study and Prediction Model of Low Temperature Mechanical Properties of High-Strength Steel[J]. Journal of Shanghai Jiao Tong University, 2024, 58(11): 1707-1715.
表1
常温与低温环境下HG785钢材力学性能指标
试样 | t/ mm | T/ ℃ | ET/ GPa | ET/ ETa | IE,P | fyT/ MPa | fyT/ fyTa | Ify,P | fuT/ MPa | fuT/ fuTa | Ifu,P | IE,Test/ IE,P | Ify,Test/ Ify,P | Ifu,Test/ Ifu,P |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H6T25 | 6 | 25 | 186 | 1.00 | 1.00 | 615 | 1.00 | 1.00 | 699 | 1.00 | 1.00 | 1.000 | 1.000 | 1.000 |
H6T-20 | 6 | -20 | 190 | 1.02 | 1.08 | 695 | 1.13 | 1.06 | 833 | 1.19 | 1.07 | 0.951 | 1.062 | 1.110 |
H6T-40 | 6 | -40 | 205 | 1.10 | 1.12 | 747 | 1.22 | 1.10 | 835 | 1.20 | 1.11 | 0.987 | 1.107 | 1.073 |
H6T-60 | 6 | -60 | 214 | 1.15 | 1.16 | 726 | 1.18 | 1.14 | 855 | 1.22 | 1.16 | 0.988 | 1.039 | 1.056 |
H6T-75 | 6 | -75 | 226 | 1.21 | 1.20 | 756 | 1.23 | 1.17 | 847 | 1.21 | 1.20 | 1.009 | 1.053 | 1.014 |
H8T25 | 8 | 25 | 193 | 1.00 | 1.00 | 627 | 1.00 | 1.00 | 704 | 1.00 | 1.00 | 1.000 | 1.000 | 1.000 |
H8T-20 | 8 | -20 | 201 | 1.04 | 1.08 | 686 | 1.10 | 1.06 | 799 | 1.14 | 1.07 | 0.967 | 1.029 | 1.057 |
H8T-40 | 8 | -40 | 210 | 1.09 | 1.12 | 650 | 1.04 | 1.10 | 745 | 1.06 | 1.11 | 0.972 | 0.945 | 0.950 |
H8T-60 | 8 | -60 | 238 | 1.24 | 1.16 | 662 | 1.06 | 1.14 | 790 | 1.12 | 1.16 | 1.061 | 0.929 | 0.969 |
H8T-75 | 8 | -75 | 218 | 1.13 | 1.20 | 729 | 1.16 | 1.17 | 865 | 1.23 | 1.20 | 0.940 | 0.996 | 1.027 |
平均值 | 0.988 | 1.016 | 1.026 | |||||||||||
变异系数 | 0.034 | 0.054 | 0.049 |
表2
IE,P全子集回归模型检验统计量
序号 | 变量 | R2 | 调整后R2 | Cp | AIC | SBC |
---|---|---|---|---|---|---|
1 | T | 0.80 | 0.77 | 1.00 | -34.16 | -33.25 |
2 | t | 0.00 | -0.12 | 28.72 | -18.15 | -17.24 |
3 | ETa | 0.00 | -0.12 | 28.72 | -18.15 | -17.24 |
4 | t,T | 0.80 | 0.74 | 3.00 | -32.16 | -30.95 |
5 | T,ETa | 0.80 | 0.74 | 3.00 | -32.16 | -30.95 |
6 | t,ETa | 0.00 | -0.12 | 28.72 | -16.15 | -14.94 |
7 | t,T,ETa | 0.80 | 0.74 | 3.00 | -30.16 | -28.65 |
表3
Ify,P全子集回归模型检验统计量
序号 | 变量 | R2 | 调整后R2 | Cp | AIC | SBC |
---|---|---|---|---|---|---|
1 | T | 0.53 | 0.47 | 8.03 | -25.38 | -24.47 |
2 | t | 0.24 | 0.14 | 16.78 | -20.54 | -19.63 |
3 | fyTa | 0.24 | 0.14 | 16.78 | -20.54 | -19.63 |
4 | t,T | 0.77 | 0.70 | 3.00 | -30.34 | -29.13 |
5 | T,fyTa | 0.77 | 0.70 | 3.00 | -30.34 | -29.13 |
6 | t,fyTa | 0.24 | 0.14 | 16.78 | -18.54 | -17.33 |
7 | t,T,fyTa | 0.77 | 0.70 | 3.00 | -28.34 | -26.82 |
表4
Ifu,P全子集回归模型检验统计量
序号 | 变量 | R2 | 调整后R2 | Cp | AIC | SBC |
---|---|---|---|---|---|---|
1 | T | 0.65 | 0.61 | 3.86 | -27.51 | -26.60 |
2 | fuTa | 0.10 | -0.01 | 19.30 | -18.09 | -17.18 |
3 | t | 0.10 | -0.01 | 19.30 | -18.09 | -17.18 |
4 | T,fuTa | 0.75 | 0.68 | 3.00 | -28.94 | -27.73 |
5 | t,T | 0.75 | 0.68 | 3.00 | -28.94 | -27.73 |
6 | t,fuTa | 0.10 | -0.01 | 19.30 | -16.09 | -14.88 |
7 | t,T,fuTa | 0.75 | 0.68 | 3.00 | -26.94 | -25.42 |
[1] | MA J L, CHAN T M, YOUNG B. Material properties and residual stresses of cold-formed high strength steel hollow sections[J]. Journal of Constructional Steel Research, 2015, 109: 152-165. |
[2] | CHEN M T, YOUNG B. Tests of cold-formed normal and high strength steel tubes under tension[J]. Thin-Walled Structures, 2020, 153: 106844. |
[3] | 班慧勇, 施刚, 石永久, 等. 建筑结构用高强度钢材力学性能研究进展[J]. 建筑结构, 2013, 43(2): 88-94. |
BAN Huiyong, SHI Gang, SHI Yongjiu, et al. Research advances on mechanical properties of high strength structural steels[J]. Building Structure, 2013, 43(2): 88-94. | |
[4] | 徐克龙, 施刚, 林错错. 960 MPa高强度钢材轴压柱局部稳定性能及设计方法[J]. 湖南大学学报(自然科学版), 2017, 44(1): 102-111. |
XU Kelong, SHI Gang, LIN Cuocuo. Analysis and design method on local buckling behavior of 960 MPa high strength steel columns under axial compression[J]. Journal of Hunan University (Natural Sciences), 2017, 44(1): 102-111. | |
[5] | 王卫永, 李国强. 高强钢结构抗火设计理论研究进展[J]. 工业建筑, 2016, 46(7): 61-67. |
WANG Weiyong, LI Guoqiang. Research progress of fire resistance design theory of high strength steel structures[J]. Industrial Construction, 2016, 46(7): 61-67. | |
[6] | MENG X, GARDNER L. Cross-sectional behaviour of cold-formed high strength steel circular hollow sections[J]. Thin-Walled Structures, 2020, 156: 106822. |
[7] | 郭宏超, 万金怀, 刘云贺, 等. Q690D高强钢焊缝连接疲劳性能试验研究[J]. 土木工程学报, 2018, 51(9): 1-9. |
GUO Hongchao, WAN Jinhuai, LIU Yunhe, et al. Experimental study on fatigue performance of Q690D high strength steel welded joints[J]. China Civil Engineering Journal, 2018, 51(9): 1-9. | |
[8] | KE K, ZHANG M Y, YAM M C H, et al. Block shear performance of double-line bolted S690 steel angles under uniaxial tension[J]. Thin-Walled Structures, 2022, 171: 108668. |
[9] | JIANG B H, YAM M C H, KE K, et al. Block shear failure of S275 and S690 steel angles with single-line bolted connections[J]. Journal of Constructional Steel Research, 2020, 170: 106068. |
[10] | LIN X M, YAM M C H, KE K, et al. Investigation of block shear strength of high strength steel bolted connections[J]. Journal of Constructional Steel Research, 2022, 196: 107407. |
[11] | KE K, CHEN Y Y. Seismic performance of MRFs with high strength steel main frames and EDBs[J]. Journal of Constructional Steel Research, 2016, 126: 214-228. |
[12] | ZHOU Z Y, KE K, CHEN Y Y, et al. High strength steel frames with curved knee braces: Performance-based damage-control design framework[J]. Journal of Constructional Steel Research, 2022, 196: 107392. |
[13] | BJORHOVDE R. Development and use of high performance steel[J]. Journal of Constructional Steel Research, 2004, 60(3/4/5): 393-400. |
[14] | 施刚, 班慧勇, 石永久, 等. 高强度钢材钢结构研究进展综述[J]. 工程力学, 2013, 30(1): 1-13. |
SHI Gang, BAN Huiyong, SHI Yongjiu, et al. Overview of research progress for high strength steel structures[J]. Engineering Mechanics, 2013, 30(1): 1-13. | |
[15] | 李国强. 高强结构钢连接研究进展[J]. 钢结构(中英文), 2020, 35(6): 1-40. |
LI Guoqiang. Progress of research on high-strength structural steel connections[J]. Steel Construction, 2020, 35(6): 1-40. | |
[16] | 施刚, 班慧勇, 石永久, 等. 高强度钢材钢结构的工程应用及研究进展[J]. 工业建筑, 2012, 42(1): 1-7. |
SHI Gang, BAN Huiyong, SHI Yongjiu, et al. Engineering application and recent research progress on high strength steel structures[J]. Industrial Construction, 2012, 42(1): 1-7. | |
[17] | 范重, 刘先明, 范学伟, 等. 国家体育场大跨度钢结构设计与研究[J]. 建筑结构学报, 2007, 28(2): 1-16. |
FAN Zhong, LIU Xianming, FAN Xuewei, et al. Design and research of large-span steel structure for the National Stadium[J]. Journal of Building Structures, 2007, 28(2): 1-16. | |
[18] | 陈振明, 张耀林, 彭明祥, 等. 国产高强钢及厚板在央视新台址主楼建筑中的应用[J]. 钢结构, 2009, 24(2): 34-38. |
CHEN Zhenming, ZHANG Yaolin, PENG Ming-xiang, et al. Application of high-strength steel and thick steel plates to cctv new site building[J]. Steel Construction, 2009, 24(2): 34-38. | |
[19] | 田黎敏, 郝际平, 戴立先, 等. 深圳湾体育中心结构施工过程模拟分析[J]. 建筑结构, 2011, 41(12): 118-121. |
TIAN Limin, HAO Jiping, DAI Lixian, et al. Simulation analysis on erection procedure of Shenzhen Bay Sports Center[J]. Building Structure, 2011, 41(12): 118-121. | |
[20] | 王元清, 林云, 张延年, 等. 高强度钢材Q460C低温力学性能试验[J]. 沈阳建筑大学学报(自然科学版), 2011, 27(4): 646-652. |
WANG Yuanqing, LIN Yun, ZHANG Yannian, et al. Experimental study on the mechanical properties of Q460C the high strength construction steel at low temperature[J]. Journal of Shenyang Jianzhu University (Natural Science), 2011, 27(4): 646-652. | |
[21] | 王元清, 林云, 张延年, 等. 高强度结构钢材Q460-C低温冲击韧性试验研究[J]. 工业建筑, 2012, 42(1): 8-12. |
WANG Yuanqing, LIN Yun, ZHANG Yannian, et al. Experimental study on the impact toughness of Q460-C high-strength construction steel at low temperature[J]. Industrial Construction, 2012, 42(1): 8-12. | |
[22] | YAN J B, RICHARD LIEW J Y, ZHANG M H, et al. Mechanical properties of normal strength mild steel and high strength steel S690 in low temperature relevant to Arctic environment[J]. Materials & Design, 2014, 61: 150-159. |
[23] | YAN J B, LUO Y L, LIN X C, et al. Effects of the Arctic low temperature on mechanical properties of Q690 and Q960 high-strength steels[J]. Construction and Building Materials, 2021, 300: 124022. |
[24] | 荆慧强, 何冠杰, 贾延奎. HG785高强钢焊接残余应力试验研究[J]. 科学技术与工程, 2016, 16(6): 139-142. |
JING Huiqiang, HE Guanjie, JIA Yankui. Experimental study on welded residual stress of HG785 high strength steel[J]. Science Technology and Engineering, 2016, 16(6): 139-142. | |
[25] | 陈丽娟, 赵隆崎, 蔡珍, 等. 合金元素减量化HG785钢的连续冷却转变规律研究[J]. 钢铁研究, 2014, 42(6): 37-39. |
CHEN Lijuan, ZHAO Longqi, CAI Zhen, et al. Research on continuous cooling transformation behavior of alloying elements reduced HG785 steel[J]. Research on Iron and Steel, 2014, 42(6): 37-39. | |
[26] | ASTM. Standard test methods for tension testing of metallic materials: E8/E8M—16a[S]. USA: ASTM International, 2016. |
[27] | CHEN M T, YOUNG B. Tensile tests of cold-formed stainless steel tubes[J]. Journal of Structural Engineering, 2020, 146(9): 04020165. |
[28] | CHEN M T, ZHANG T, GONG Z, et al. Mechanical properties and microstructure characteristics of wire arc additively manufactured high-strength steels[J]. Engineering Structures, 2024, 300: 117092. |
[29] | CHEN M T, GONG Z, ZHANG T, et al. Mechanical behavior of austenitic stainless steels produced by wire arc additive manufacturing[J]. Thin-walled Structures, 2024, 196: 111455. |
[30] | CHEN M T, CHEN Y, ZUO W, et al. Experimental investigation on the tensile behavior of wire arc additively manufactured duplex stainless steel plates[J]. Engineering Structures, 2024, 321: 118764. |
[31] | CHEN M T, PANDEY M, YOUNG B. Mechanical properties of cold-formed steel semi-oval hollow sections after exposure to ISO-834 fire[J]. Thin-Walled Structures, 2021, 167: 108202. |
[1] | 刘俊城, 谭勇, 张生杰. 地铁车站深基坑开挖变形智能多步预测方法[J]. 上海交通大学学报, 2024, 58(7): 1108-1117. |
[2] | 胡亚飞, 李克庆, 韩斌, 吉坤. 多因素耦合下尾砂胶结充填体强度优化与预测[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(5): 845-856. |
[3] | 王玉娟1,李文刚2,刘建勇3,陈广学4,汪军1. fiber;麻灰色原配色丝织物的颜色预测模型[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 802-808. |
[4] | 张博, 李克庆, 胡亚飞, 吉坤, 韩斌. 基于灰狼优化算法改进支持向量回归的充填体强度预测研究[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 686-694. |
[5] | 段红燕, 唐国鑫, 盛捷, 曹孟杰, 裴磊, 田宏伟. 一种新型的疲劳强度预测模型[J]. 上海交通大学学报, 2022, 56(6): 801-808. |
[6] | 王 娟, 杨明旺, 郑茂尧, 刘凌云, 赵立君. 高强钢在大型半潜式平台组块建造中的应用[J]. 海洋工程装备与技术, 2022, 9(1): 27-31. |
[7] | 刘昶江, 赵兵, 陈务军. 不同温度下的乙烯-三氟氯乙烯共聚物薄膜单轴拉伸试验[J]. 上海交通大学学报, 2021, 55(4): 387-393. |
[8] | 祝颂, 钱晓超, 陆营波, 刘飞. 基于XGBoost的装备体系效能预测方法[J]. 空天防御, 2021, 4(2): 1-. |
[9] | 荣雪宁,卢浩,王明洋,文祝,戎晓力,王振. 基于刀盘扭转能量的土压平衡盾构刀具磨损分析[J]. 上海交通大学学报, 2019, 53(8): 965-970. |
[10] | 李雪龙,于忠奇,赵亦希,EVSYUKOV S A. 多道次普旋预成形阶段法兰起皱预测[J]. 上海交通大学学报, 2019, 53(11): 1375-1380. |
[11] | 武念铎1,强旭红1,刘晓2,罗永峰1. 考虑螺栓抗弯刚度的T型连接初始刚度计算方法[J]. 上海交通大学学报(自然版), 2018, 52(12): 1571-1579. |
[12] | 纪良波. 基于小波神经网络熔丝堆积三维打印精度预测模型[J]. 上海交通大学学报(自然版), 2015, 49(03): 375-378. |
[13] | 陈玉喜1,刘亮2,张华军2,陈华斌1,陈善本1. 焊接热输入对低合金高强钢焊缝组织和韧性的影响[J]. 上海交通大学学报(自然版), 2015, 49(03): 306-309. |
[14] | 余龙a,李尧b,夏利娟a,丁金鸿a,杨启a. 船用气囊力学特性及极限承载力分析[J]. 上海交通大学学报(自然版), 2014, 48(08): 1072-1077. |
[15] | 白小敏, 巩建鸣, 王艳飞. 高强钢氢致滞后断裂滞后时间的有限元预测 [J]. 上海交通大学学报(自然版), 2012, 46(07): 1079-1083. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||