J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (5): 845-856.doi: 10.1007/s12204-022-2409-6
胡亚飞,李克庆,韩斌,吉坤
接受日期:
2021-03-02
出版日期:
2024-09-28
发布日期:
2024-09-28
HU Yafei(胡亚飞), LI Keqing(李克庆),HAN Bin* (韩斌), JI Kun(吉坤)
Accepted:
2021-03-02
Online:
2024-09-28
Published:
2024-09-28
摘要: 为解决低温环境下(≤20℃)尾砂胶结充填体强度不稳定问题,开展了多因素影响下尾砂胶结充填体强度优化与预测。采用响应面法进行试验设计,分析了固化温度、砂灰比和料浆质量分数耦合作用下充填体强度的发展规律,并对配合比进行了优化;采用人工神经网络算法(ANN)和粒子群优化算法(PSO),建立了充填体强度预测模型。根据响应面法试验结果,得到了不同固化温度下的最佳配比。固化温度为10 ~ 15℃时,砂灰比最佳配合比为9,料浆质量分数为71%;固化温度为15 ~ 20℃时,砂灰比最佳配合比为8,料浆质量分数为69%。ANN-PSO智能模型能够准确地预测尾砂胶结充填体强度,其平均相对估计误差值和相关系数值仅为1.95%和0.992,可以快速准确地预测不同混合比例下的尾砂胶结充填体强度。
中图分类号:
胡亚飞, 李克庆, 韩斌, 吉坤. 多因素耦合下尾砂胶结充填体强度优化与预测[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(5): 845-856.
HU Yafei(胡亚飞), LI Keqing(李克庆), HAN Bin (韩斌), JI Kun(吉坤). Strength Optimization and Prediction of Cemented Tailings Backfill Under Multi-Factor Coupling[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(5): 845-856.
[1] GAO S, CUI X W, KANG S B, et al. Sustainable applications for utilizing molybdenum tailings in concrete[J]. Journal of Cleaner Production, 2020, 266: 122020. [2] LI L, JIANG T, CHEN B J, et al. Overall utilization of vanadium-titanium magnetite tailings to prepare lightweight foam ceramics [J]. Process Safety andEnvironmental Protection, 2020, 139: 305-314. [3] DENG H W, HE W, ZHOU K P. Heavy metals distribution in reclamation tailings and assessment of ecological risk [J]. The Chinese Journal of Nonferrous Metals, 2015, 25(10): 2929-2935 (in Chinese). [4] ZHANG Q L, WANG S, WANG X M. Influence rules of unit consumptions of flocculants on interface sedimentation velocity of unclassified tailings slurry [J]. The Chinese Journal of Nonferrous Metals, 2017, 27(2):318-324 (in Chinese). [5] LIU B, GAO Y T, JIN A B, et al. Dynamic characteristics of superfine tailings-blast furnace slag backfill featuring filling surface [J]. Construction and Building Materials, 2020, 242: 118173. [6] ZHAO K, YU X, ZHU S T, et al. Acoustic emission investigation of cemented paste backfill prepared with tantalum-niobium tailings [J]. Construction and Building Materials, 2020, 237: 117523. [7] XU W B, CAO Y, LIU B H. Strength efficiency evaluation of cemented tailings backfill with different stratified structures [J]. Engineering Structures, 2019, 180: 18-28. [8] ZHANG S Y, REN F Y, GUO Z B, et al. Strength and deformation behavior of cemented foam backfill in subzero environment [J]. Journal of Materials Research and Technology, 2020, 9(4): 9219-9231. [9] ROSHANI A, FALL M. Rheological properties of cemented paste backfill with nano-silica: Link to curing temperature [J]. Cement and Concrete Composites, 2020: 114: 103785. [10] FANG K, FALL M. Effects of curing temperature on shear behaviour of cemented paste backfill-rock interface [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 184-192. [11] LI J J, YILMAZ E, CAO S. Influence of solid content, cement/tailings ratio, and curing time on rheology and strength of cemented tailings backfill [J]. Minerals, 2020, 10(10): 922. [12] YIN S H, LIU J M, SHAO Y J, et al. Influence rule of early compressive strength and solidification mechanism of full tailings paste with coarse aggregate [J]. Journal of Central South University(Science and Technology), 2020, 51(2): 478-488 (in Chinese). [13] QI C C, TANG X L, DONG X J, et al. Towards intelligent mining for backfill: A genetic programmingbased method for strength forecasting of cemented paste backfill [J]. Minerals Engineering, 2019, 133: 69-79. [14] ZHANG F X, KANG Z Q, XIN D F. Characteristic test and proportion study of cemented backfill in an iron mine [J]. Mining Research and Development, 2020,40(2): 38-41(in Chinese). [15] QI C C, YANG X Y, LI G C, et al. Research status and perspectives of the application of artificial intelligence in mine backfilling [J]. Journal of China Coal Society, 2021, 46(2): 688-700 (in Chinese). [16] XU W B, LI Q L, LIU B. Coupled effect of curing temperature and age on compressive behavior, microstructure and ultrasonic properties of cemented tailings backfill [J]. Construction and Building Materials, 2020, 237: 117738. [17] WANG Y, WU A X, WANG H J, et al. Effect of low temperature on early strength of cemented paste back-fill from a copper mine and engineering recommendations [J]. Chinese Journal of Engineering, 2018, 40(8):925-930 (in Chinese). [18] HOU C, ZHU W C, YAN B X, et al. The effects of temperature and binder content on the behavior of frozen cemented tailings backfill at early ages [J]. Construction and Building Materials, 2020, 239: 117752. [19] CHEN S M, WU A X, WANG Y M, et al. Coupled effects of curing stress and curing temperature on mechanical and physical properties of cemented paste backfill [J]. Construction and Building Materials, 2021,273: 121746. [20] BULL A J, FALL M. Curing temperature dependency of the release of arsenic from cemented paste backfill made with Portland cement [J]. Journal of Environmental Management, 2020, 269: 110772. [21] FU Z G, QIAO D P, GUO Z L, et al. Experimental research on mix proportioning and strength of cemented hydraulic fill with waste rock and eolian sand based on RSM-BBD [J]. Journal of China Coal Society, 2018, 43(3): 694-703 (in Chinese). [22] TAO Y J, ZHU X N, TAO D P, et al. Optimization of triboelectrostatic decarbonization experiment of fly ash by Design-Expert [J]. Journal of China Coal Society, 2016, 41(2): 475-482 (in Chinese). [23] GAO Q, YANG X B, WEN Z J, et al. Optimization of proportioning of mixed aggregate filling slurry based on BBD response surface method [J]. Journal of Hunan University (Natural Sciences), 2019, 46(6): 47-55 (in Chinese). [24] ZHU L Y, LU W S, YANG P, et al. Thickening sedimentation of unclassified tailings under influence of external field based on response surface method [J]. The Chinese Journal of Nonferrous Metals, 2018, 28(9):1908-1917 (in Chinese). [25] WU H, ZHAO G Y, CHEN Y. Multi-objective optimization for mix proportioning of mine filling materials [J]. Journal of Harbin Institute of Technology, 2017,49(11): 101-108 (in Chinese). [26] XU M F, GAO Y T, JIN A B, et al. Prediction of cemented backfill strength by ultrasonic pulse velocity and BP neural network [J]. Chinese Journal of Engineering, 2016, 38(8): 1059-1068 (in Chinese). [27] JAHANGIR H, EIDGAHEE D R. A new and robust hybrid artificial bee colony algorithm-ANN model for FRP-concrete bond strength evaluation [J]. Composite Structures, 2021, 257: 113160. [28] RAO P S, KUMAR S, KHAN M Y. Comparison of prediction capabilities of MRR parameter using RSM and ANN for dry turning of Inconel 825 alloy using cryogenically treated tungsten carbide tool [J]. Materials Today: Proceedings, 2020. https://doi.org/10.1016/j.matpr.2020.10.163. [29] ALONSO-MONTESINOS J, BALLESTR′IN J, LOPEZ G, et al. The use of ANN and conventional solar-plant meteorological variables to estimate atmospheric horizontal extinction [J]. Journal of Cleaner Production, 2021, 285: 125395. [30] Chinese Forum of MATLAB. MATLAB neural network analysis of 30 cases [M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2010(in Chinese). [31] QI C C, CHEN Q S, FOURIE A, et al. An intelligent modelling framework for mechanical properties of cemented paste backfill [J]. Minerals Engineering, 2018, 123: 16-27. [32] RAMACHANDRAN S, JAYALAL M L, RIYAS A, et al. Application of genetic algorithm for optimization of control rods positioning in a fast breeder reactor core [J]. Nuclear Engineering and Design, 2020, 361:110541. [33] ZHOU K P, WANG X X, GAO F. Stope structural parameters optimization based on strength reduction and ANN-GA model [J]. Journal of Central South University (Science and Technology), 2013, 44(7): 2848-2854(in Chinese). [34] WU W, JI K, ZHANG P. Strength prediction of filling body based on ANN-PSO model and its engineering application [J]. Mining Research and Development,2020, 40(2): 53-57 (in Chinese). [35] SHAO H D, DING Z Y, CHENG J S, et al. Intelligent fault diagnosis among different rotating machines using novel stacked transfer auto-encoder optimized by PSO [J]. ISA Transactions, 2020, 105: 308-319. [36] MA C, ZHAO L, MEI X S, et al. Thermal error modeling of machine tool spindle based on particle swarm optimization and neural network [J]. Journal of Shanghai Jiao Tong University, 2016, 50(5): 686-695 (in Chinese). |
[1] | 韦益夫1,2,KAWAMURA Yasumi3,王德禹1,2,3. 改进移动最小二乘法及其在结构可靠性分析中的应用[J]. 上海交通大学学报(自然版), 2018, 52(4): 455-460. |
[2] | 刘畅辉a,金隼a,来新民a,李飞b. 基于RSM-GA法的薄壁蜡模压蜡过程收缩率建模与优化[J]. 上海交通大学学报(自然版), 2015, 49(09): 1380-1386. |
[3] | 谷云庆1,牟介刚1,郑水华1,赵刚2,孙壮志2,汝晶2. 射流表面多因素耦合减阻特性及其对边界层的控制行为[J]. 上海交通大学学报(自然版), 2014, 48(09): 1334-1340. |
[4] | 陈承皓, 薛鸿祥, 唐文勇. 基于全寿命裂纹扩展模型的钛合金球壳疲劳可靠性分析[J]. 上海交通大学学报(自然版), 2013, 47(02): 307-311. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||