上海交通大学学报 ›› 2020, Vol. 54 ›› Issue (5): 481-489.doi: 10.16183/j.cnki.jsjtu.2020.05.005
王锴,夏添,饶宇
发布日期:
2020-06-02
通讯作者:
饶宇,男,教授,博士生导师,电话(Tel.):021-34205986;E-mail:yurao@sjtu.edu.cn.
作者简介:
王锴(1994-),男,福建省福州市人,硕士生,主要从事航空发动机/燃气轮机气动与传热研究.
基金资助:
WANG Kai,XIA Tian,RAO Yu
Published:
2020-06-02
摘要: 针对雷诺数为 40000 下涡轮叶片内部三通道旋流冷却结构进行瞬态热色液晶实验与数值模拟研究,并与普通转折通道进行比较分析.通过瞬态实验获得壁面高精度的努塞尔数分布与通道的沿程压力损失,结合数值计算结果得到如下结论:旋流通道显著增强了系统的换热能力与换热均匀性,第2、第3流程的壁面平均努塞尔数比普通转折通道分别提升了60%、57%;转折位置的冲击损失与节流损失是三通道结构的主要压力损失;旋流通道的全通道压力系数约为普通转折通道的3倍,且随着雷诺数的增大有增大的趋势;数值计算显示旋流通道内总压损失比静压损失减少了25%,使用总压分析沿程压力系数更为合理.
中图分类号:
王锴,夏添,饶宇. 三通道旋流冷却流动与传热性能[J]. 上海交通大学学报, 2020, 54(5): 481-489.
WANG Kai,XIA Tian,RAO Yu. Flow Characteristics and Heat Transfer of Swirl Cooling in Three-Pass Channel[J]. Journal of Shanghai Jiaotong University, 2020, 54(5): 481-489.
[1]KREITH F, MARGOLIS D. Heat transfer and friction in turbulent vortex flow[J]. Applied Scientific Research, Section A, 1959, 8(1): 457-473. [2]BIEGGER C, SOTGIU C, WEIGAND B. Numerical investigation of flow and heat transfer in a swirl tube[J]. International Journal of Thermal Sciences, 2015, 96: 319-330. [3]JIANG Y T, ZHENG Q, YUE G Q, et al. Numerical investigation on blade leading edge high-efficiency swirl and impingement phase transfer cooling mechanism[J]. Numerical Heat Transfer, 2016, 69(1): 67-84. [4]WANG N, CHEN A F, ZHANG M J, et al. Turbine blade leading edge cooling with one row of normal or tangential impinging jets[C]//ASME Turbine Technical Conference and Exposition (Turbo Expo). Charlotte, NC, USA: ASME, 2017: V05AT16A007. [5]KUSTERER K, LIN G, SUGIMOTO T, et al. Novel gas turbine blade leading edge cooling configuration using advanced double swirl chambers[C]//ASME Turbo Expo: Turbine Technical Conference & Exposition. Montreal, Canada: ASME, 2015: V05AT11A006. [6]KUSTERER K, BHLER P, LIN G, et al. Conjugate heat transfer analysis of a blade leading edge cooling configuration using double swirl chambers[C]//ASME Turbo Expo: Turbine Technical Conference and Exposition. Seoul, South Korea: ASME, 2016: V05BT11A010. [7]BIEGGER C, WEIGAND B. Flow and heat transfer measurements in a swirl chamber with different outlet geometries[J]. Experiments in Fluids, 2015, 56(4): 78. [8]FAN X J, DU C H, LI L, et al. Numerical simulation on effects of film hole geometry and mass flow on vortex cooling behavior for gas turbine blade leading edge[J]. Applied Thermal Engineering, 2017, 112: 472-483. [9]DU C H, LI L, FAN X J, et al. Rotational influences on aerodynamic and heat transfer behavior of gas turbine blade vortex cooling with bleed holes[J]. Applied Thermal Engineering, 2017, 121: 302-313. [10]LIU Y Y, RAO Y, WEIGAND B. Heat transfer and pressure loss characteristics in a swirl cooling tube with dimples on the tube inner surface[J]. International Journal of Heat and Mass Transfer, 2019, 128: 54-65. [11]LIU Z, LI J, FENG Z P, et al. Numerical study on the effect of jet nozzle aspect ratio and jet angle on swirl cooling in a model of a turbine blade leading edge cooling passage[J]. International Journal of Heat and Mass Transfer, 2015, 90: 986-1000. [12]LIU Z, LI J, FENG Z P, et al. Numerical study on the effect of jet spacing on the swirl flow and heat transfer in the turbine airfoil leading edge region[J]. Numerical Heat Transfer, 2016, 70(9): 980-994. [13]DU C H, LI L, WU X, et al. Effect of jet nozzle geometry on flow and heat transfer performance of vortex cooling for gas turbine blade leading edge[J]. Applied Thermal Engineering, 2016, 93: 1020-1032. [14]MOUSAVI S M, GHADIMI B, KOWSARY F. Numerical study on the effects of multiple inlet slot configurations on swirl cooling of a gas turbine blade leading edge[J]. International Communications in Heat and Mass Transfer, 2018, 90: 34-43. [15]DAMAVANDI M D, MOUSAVI S M, SAFIKHANI H. Pareto optimal design of swirl cooling chambers with tangential injection using CFD, GMDH-type of ANN and NSGA-II algorithm[J]. International Journal of Thermal Sciences, 2017, 122: 102-114. [16]BRUSCHEWSKI M, SCHERHAG C, SCHIFFER H P, et al. Influence of channel geometry and flow variables on cyclone cooling of turbine blades[J]. Journal of Turbomachinery, 2016, 138(6): 061005. [17]徐虹艳. 涡轮叶片尾缘旋流冷却特性研究[D]. 南京: 南京航空航天大学, 2012. XU Hongyan. Investigation on vortex cooling performances in turbine blade trailing edge[D]. Nanjing: Nanjing University of Aeronautics and Astronautic, 2012. [18]KHALATOV A, SYRED N, BOWEN P, et al. Innovative cyclone cooling scheme for gas turbine blade: Thermal-hydraulic performance evaluation[C]//ASME Turbo Expo 2000: Power for Land, Sea, and Air. Munich, Germany: ASME, 2000: V003T01A045. [19]MOFFAT R J. Describing the uncertainties in experimental results[J]. Experimental Thermal & Fluid Science, 1988, 1(1): 3-17. [20]RAO Y, BIEGGER C, WEIGAND B. Heat transfer and pressure loss in swirl tubes with one and multiple tangential jets pertinent to gas turbine internal cooling[J]. International Journal of Heat and Mass Transfer, 2016, 106: 1356-1367. |
[1] | 李文琛, 蔡一凡, 严泰森, 李廷贤, 王如竹. 三水合醋酸钠/膨胀石墨复合相变材料的制备及其储热性能[J]. 上海交通大学学报, 2020, 54(10): 1015-1023. |
[2] | 邹旭毛,李良星,孔刘波,王华胜. 颗粒堆积床内两相流动阻力及相间摩擦力[J]. 上海交通大学学报(自然版), 2017, 51(4): 470-. |
[3] | 李天1,张鹏1,龙志强1,沈飚1,2. 超临界混合流体自然对流的三维数值模拟[J]. 上海交通大学学报(自然版), 2017, 51(1): 12-. |
[4] | 邢建峰1,饶宇1,李博2,饶琨3. 具有微小V肋-凹陷复合结构表面湍流传热实验研究[J]. 上海交通大学学报(自然版), 2017, 51(1): 40-. |
[5] | 李鹏程a,孙志坚a,汤舟a,俞自涛a,b,胡亚才a. 扇形内翅片石墨管层流强化传热性能[J]. 上海交通大学学报(自然版), 2016, 50(04): 557-562. |
[6] | 饶宇,李麟. 具有柱肋阵列与分离式柱肋阵列的冷却通道内流阻与传热实验研究[J]. 上海交通大学学报(自然版), 2014, 48(06): 782-787. |
[7] | 李双双, 马琪, 刘振华. 纳米流体在铜丝丝网平板热管中的应用[J]. 上海交通大学学报(自然版), 2013, 47(04): 555-559. |
[8] | 李春曦, 沈雷, 叶学民, 童家麟. 含表面活性剂液膜的去湿特性[J]. 上海交通大学学报(自然版), 2013, 47(04): 572-578. |
[9] | 韩维哲, 丁国良, 胡海涛, 庄大伟. 湿工况下翅片管换热器空气侧热质传递的数值模型 [J]. 上海交通大学学报(自然版), 2013, 47(03): 385-391. |
[10] | 丁国良1, 彭浩2, 胡海涛1, 庄大伟1. 含油纳米制冷剂沸腾中气相与液相之间球形纳米颗粒的迁移特性[J]. 上海交通大学学报(自然版), 2012, 46(05): 671-676. |
[11] | 王艳峰, 胡欲立. 电池架导热系数对水下航行器电池舱段 内部发热和传热过程的影响[J]. 上海交通大学学报(自然版), 2012, 46(05): 683-687. |
[12] | 胡海涛1, 黄翔超1, 丁国良1, 邓斌2, 郑永新3, 高屹峰3, 宋吉3. 润滑油对小管径强化管内R410A流动冷凝压降特性的影响[J]. 上海交通大学学报(自然版), 2012, 46(04): 515-519. |
[13] | 张萍1,谷波1,王婷1,赵鹏程2,马洪涛2. 多元微通道平行流冷凝器理论模型与实验研究[J]. 上海交通大学学报(自然版), 2013, 47(11): 1738-1744. |
[14] | 刘振宇,陈娅琪,吴慧英. 变工况空间太阳电池翼在轨热变形分析[J]. 上海交通大学学报(自然版), 2013, 47(11): 1762-1766. |
[15] | 陈彦君,李元阳,刘振华. 基于多相流模型的纳米流体在水平细圆管内强制对流换热数值模拟[J]. 上海交通大学学报(自然版), 2014, 48(09): 1303-1308. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||