上海交通大学学报 ›› 2020, Vol. 54 ›› Issue (10): 1015-1023.doi: 10.16183/j.cnki.jsjtu.2019.108
李文琛,蔡一凡,严泰森,李廷贤,王如竹
收稿日期:
2019-04-16
出版日期:
2020-10-28
发布日期:
2020-11-09
通讯作者:
李廷贤,男,副教授,博士生导师,电话(Tel.):021-34206335;E-mail:Litx@sjtu.edu.cn.
作者简介:
李文琛(1997-),男,山东省济宁市人,硕士生,主要从事相变储能研究.
基金资助:
LI Wenchen,CAI Yifan,YAN Taisen,LI Tingxian,WANG Ruzhu
Received:
2019-04-16
Online:
2020-10-28
Published:
2020-11-09
摘要: 水合盐储能材料普遍存在热导率低、过冷度大及相分离问题.本文通过熔融共混制备了以三水合醋酸钠(SAT)为主体的复合相变材料(CPCM).采用膨胀石墨(EG)作为高导热添加物强化导热系数,同时作为成核剂改善其过冷度问题.采用黄原胶(XG)为增稠剂改善复合相变材料的相分离问题.研究了复合相变材料的导热性能、相变性能及热稳定性,并基于该复合相变材料(SAT/EG/XG)搭建了高储热密度的相变储热器,研究了该装置在85℃热源、20℃冷源下的储放热性能.结果表明:膨胀石墨的加入可明显增强热导率及消除过冷度.添加2%~4%(质量分数)膨胀石墨,复合相变材料热导率可达1.12~1.81W/(m·K),为纯SAT热导率的2~3倍,且添加0.5%~1.2%(质量分数)黄原胶可明显抑制相分离.复合相变材料具有很好的热稳定性,50次循环后其熔化温度保持在58.0℃左右,凝固温度稳定在57.6℃左右,无明显过冷度,相变焓为250~255kJ/kg.基于该复合相变材料的储热器的储热密度可达442.7kJ/L,是传统水箱的1.7倍,储放热效率达96.4%,具有明显的储热优势.
中图分类号:
李文琛, 蔡一凡, 严泰森, 李廷贤, 王如竹. 三水合醋酸钠/膨胀石墨复合相变材料的制备及其储热性能[J]. 上海交通大学学报, 2020, 54(10): 1015-1023.
LI Wenchen, CAI Yifan, YAN Taisen, LI Tingxian, WANG Ruzhu. Preparation and Thermal Storage Properties of Sodium Acetate Trihydrate-Expanded Graphite as Phase Change Composite[J]. Journal of Shanghai Jiaotong University, 2020, 54(10): 1015-1023.
[1] | 王晓霖, 翟晓强, 王恬, 等. 高温供冷相变蓄冷材料的制备及蓄冷性能[J]. 上海交通大学学报, 2013, 47(8): 1275-1281. |
WANG Xiaolin, ZHAI Xiaoqiang, WANG tian, et al. Preparation and performance of cold storage phase change material for high temperature cooling application[J]. Journal of Shanghai Jiao Tong University, 2013, 47(8): 1275-1281. | |
[2] | CHEN Y F, WU X J, YUE S T, et al. Ethylene-propylene terpolymer-modified polyethylene-based phase change material with enhanced mechanical and thermal properties for building application[J]. Industrial and Engineering Chemistry Research, 2019, 58(1): 179-186. |
[3] | ZHANG D, CHEN M, LIU Q, et al. Preparation and thermal properties of molecular-bridged expanded graphite/polyethylene glycol composite phase change materials for building energy conservation[J]. Materials, 2018, 11(5): 818-833. |
[4] | YE R D, LIN W Z, YUAN K J, et al. Experimental and numerical investigations on the thermal performance of building plane containing CaCl2·6H2O/expanded graphite composite phase change material[J]. Applied Energy, 2017, 193: 325-335. |
[5] | ABOKERSH M H, OSMAN M, EL-BAZ O, et al. Review of the phase change material (PCM) usage for solar domestic water heating systems (SDWHS)[J]. International Journal of Energy Research, 2018, 42(2): 329-357. |
[6] | XU B, ZHOU J, NI Z J, et al. Synthesis of novel microencapsulated phase change materials with copper and copper oxide for solar energy storage and photo-thermal conversion[J]. Solar Energy Materials and Solar Cells, 2018, 179: 87-94. |
[7] | HEREZ A, RAMADAN M, KHALED M. Review on solar cooker systems: Economic and environmental study for different Lebanese scenarios[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 421-432. |
[8] | QIAN T T, ZHU S K, WANG H L, et al. Compa-rative study of single-walled carbon nanotube and graphene nanoplatelets for improving the thermal conductivity and solar-to-light conversion of PEG-infiltrated phase change material composites[J]. ACS Sustainable Chemistry and Engineering, 2019, 7(2): 2446-2458. |
[9] | HUANG X, LIN Y X, ALVA G, et al. Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage[J]. Solar Energy Materials and Solar Cells, 2017, 170: 68-76. |
[10] | BERTRAND A, AGGOUNE R, MAREVHAL F O. In-building waste water heat recovery: An urban-scale method for the characterisation of water streams and the assessment of energy savings and costs[J]. Applied Energy, 2017, 192: 110-125. |
[11] | XIA M Z, YUAN Y P, ZHAO X D, et al. Cold storage condensation heat recovery system with a novel composite phase change material[J]. Applied Energy, 2016, 175: 259-268. |
[12] | JIA J, LEE W L. Experimental investigations on using phase change material for performance improvement of storage-enhanced heat recovery room air-conditioner[J]. Energy, 2015, 93: 1394-1403. |
[13] | SHAID A, WANG L J, ISLAM S, et al. Preparation of aerogel-eicosane microparticles for thermore-gulatory coating on textile[J]. Applied Thermal Engineering, 2016, 107: 602-611. |
[14] | KAZEMI Z, MORTAZAVI S M. A new method of application of hydrated salts on textiles to achieve thermoregulating properties[J]. Thermochimica Acta, 2014, 589(10): 56-62. |
[15] | LV Y F, SITU W F, YANG X Q, et al. A novel nanosilica-enhanced phase change material with anti-leakage and anti-volume-changes properties for ba-ttery thermal management[J]. Energy Conversion and Management, 2018, 163: 250-259. |
[16] | WU W X, WU W, WANG S F. Thermal management optimization of a prismatic battery with shape-stabilized phase change material[J]. International Journal of Heat and Mass Transfer, 2018, 121: 967-977. |
[17] | PIELICHOWSKA K, PIELICHOWSKI K. Phase change materials for thermal energy storage[J]. Progress in Materials Science, 2014, 65: 67-123. |
[18] | 孟令然, 郭立江, 李晓禹, 等. 水合盐相变储能材料的研究进展[J]. 储能科学与技术, 2017, 6(4): 623-632. |
MENG Lingran, GUO Lijiang, LI Xiaoyu, et al. Salt hydrate based phase change materials for thermal energy storage: A review[J]. Energy Storage Science and Technology, 2017, 6(4): 623-632. | |
[19] | KENISARIN M, MAHKAMOV K. Salt hydrates as latent heat storage materials: Thermophysical properties and costs[J]. Solar Energy Materials and Solar Cells, 2016, 145: 255-286. |
[20] | OR E, DE GRACIA A, CASTELL A, et al. Review on phase change materials (PCMs) for cold thermal energy storage applications[J]. Applied Energy, 2012, 99: 513-533. |
[21] | 吴东灵, 李廷贤, 何峰, 等. 三水醋酸钠相变储能复合材料改性制备及储/放热特性[J]. 化工学报, 2018, 69(7): 2860-2868. |
WU Dongling, LI Tingxian, HE Feng, et al. Preparation and performance of modified sodium acetate trihydrate composite phase change material for thermal energy storage[J]. CIESC Journal, 2018, 69(7): 2860-2868. | |
[22] | GU X B, QIN S, WU X, et al. Preparation and thermal characterization of sodium acetate trihydrate/expanded graphite composite phase change material[J]. Journal of Thermal Analysis and Calorimetry, 2016, 125(2): 831-838. |
[23] | KENISARIN M, MAHKAMOV K. Salt hydrates as latent heat storage materials: Thermophysical properties and costs[J]. Solar Energy Materials and Solar Cells, 2016, 145: 255-286. |
[24] | KREITH F, BOHN M, KIRKPATRICK A. Principles of heat transfer[J]. Journal of Solar Energy Engineering, 1997, 119(2): 187. |
[25] | YUAN K J, ZHOU Y, SUN W C, et al. A polymer-coated calcium chloride hexahydrate/expanded graphite composite phase change material with enhanced thermal reliability and good applicability[J]. Compo-sites Science and Technology, 2018, 156: 78-86. |
[26] | LING Z Y, LI S M, ZHANG Z G, et al. A shape-stabilized MgCl2·6H2O-Mg(NO3)2·6H2O/expanded graphite composite phase change material with high thermal conductivity and stability[J]. Journal of Applied Electrochemistry, 2018, 48(10): 1131-1138. |
[27] | HOU P M, MAO J F, CHEN F, et al. Preparation and thermal performance enhancement of low tempe-rature eutectic composite phase change materials based on Na2SO4·10H2O[J]. Materials, 2018, 11(11): 2230-2245. |
[28] | MAO J F, HOU P M, LIU R R, et al. Preparation and thermal properties of SAT-CMC-DSP/EG composite as phase change material[J]. Applied Thermal Engineering, 2017, 119: 585-592. |
[29] | FU W W, ZOU T, LIANG X H, et al. Thermal properties and thermal conductivity enhancement of composite phase change material using sodium acetate trihydrate-urea/expanded graphite for radiant floor heating system[J]. Applied Thermal Engineering, 2018, 138: 618-626. |
[30] | GAWRON K, SCHRDER J. Properties of some salt hydrates for latent heat storage[J]. International Journal of Energy Research, 2010, 1(4): 351-363. |
[31] | WANG Y, YU K X, PENG H, et al. Preparation and thermal properties of sodium acetate trihydrate as a novel phase change material for energy storage[J]. Energy, 2019, 167: 269-274. |
[32] | KONG W Q, DANNEMAND M, JOHANSEN J B, et al. Experimental investigations on heat content of supercooled sodium acetate trihydrate by a simple heat loss method[J]. Solar Energy, 2016, 139: 249-257. |
[33] | MAO J F, LI J T, LI J, et al. A selection and optimization experimental study of additives to thermal energy storage material sodium acetate trihydrate[C]∥2009 International Conference on Energy and Environment Technology, Guilin, Guangxi: IEEE, 2009: 14-17. |
[34] | SHI J N, GER M D, LIU Y M, et al. Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives[J]. Carbon, 2013, 51: 365-372. |
[35] | ZHANG Y, ANIM-DANSO E, DHINOJWALA A. The effect of a solid surface on the segregation and melting of salt hydrates[J]. Journal of the American Chemical Society, 2014, 136(42): 14811-14820. |
[1] | 杨希祥. 高空科学气球下降过程航迹与热性能耦合分析[J]. 上海交通大学学报(自然版), 2016, 50(04): 608-612. |
[2] | 王宏1,方红杰1,蓝庆东1,徐丽丽2,何顺2,姜淳2,3. 空心玻璃微珠薄膜对建筑物外围护结构隔热性能的影响[J]. 上海交通大学学报(自然版), 2014, 48(09): 1341-1345. |
[3] | 沈利民1,巩建鸣2,刘焕胜1,黄玉霞1. 结焦对HP40Nb炉管传热与机械性能的影响[J]. 上海交通大学学报(自然版), 2014, 48(08): 1159-1163. |
[4] | 黄后学, 刘振宇, 陈娅琪, 吴慧英. 不同工况下空间太阳电池翼的在轨热分析[J]. 上海交通大学学报(自然版), 2012, 46(05): 790-795. |
[5] | 金哲权, 田波, 王丽伟, 王如竹. 活性炭/膨胀石墨固化混合吸附剂导热和渗透性能测试[J]. 上海交通大学学报(自然版), 2011, 45(06): 866-869. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||