上海交通大学学报(自然版) ›› 2018, Vol. 52 ›› Issue (7): 770-776.doi: 10.16183/j.cnki.jsjtu.2018.07.003
黄金超1,张佳伟2,陈宁2,陈毅鸿2,江文2,李生红1,3
出版日期:
2018-07-28
发布日期:
2018-07-28
通讯作者:
李生红,男,教授,博士生导师,E-mail:shli@sjtu.edu.cn.
基金资助:
HUANG Jinchao,ZHANG Jiawei,CHEN Ning,CHEN Yihong
Online:
2018-07-28
Published:
2018-07-28
摘要: 随着在线旅游业酒店数量的日益增多,用户点评信息稀疏问题愈加严重,这不仅导致推荐准确度大幅下降,而且使传统推荐算法的计算负荷随之增加,难以满足实时性要求.基于此,从挖掘用户历史信息与待推荐物品之间潜在相关性的角度出发,对基于内容的推荐算法进行改进,提出了一种基于偏好度特征构造的个性化推荐算法.该算法通过计算偏好分来构造偏好度特征,并借助机器学习领域的分类算法得以实现.将该算法应用于线上旅游业的个性化子房型推荐,通过对真实数据集的实验与分析,验证了所提出个性化推荐算法的简便与有效性,且较传统推荐算法更具实时性和通用性.
中图分类号:
黄金超1,张佳伟2,陈宁2,陈毅鸿2,江文2,李生红1,3. 基于偏好度特征构造的个性化推荐算法[J]. 上海交通大学学报(自然版), 2018, 52(7): 770-776.
HUANG Jinchao,ZHANG Jiawei,CHEN Ning,CHEN Yihong. Preference Degree Based Personalized Recommendation Algorithm[J]. Journal of Shanghai Jiaotong University, 2018, 52(7): 770-776.
[1]SARWAR B, KARYPIS G, KONSTAN J, et al. Analysis of recommendation algorithms for e-commerce[C]∥ACM Conference on Electronic Commerce. Minneapolis: ACM, 2000:158-167. [2]PERUGINI S, GONCALVES M A. Recommendation and personalization: A survey[J]. Journal of Intelligent Information Systems, 2002, 23(2):107-143. [3]BATET M, MORENO A, ISERN D. Turist@: Agent-based personalised recommendation of tourist activities[J]. Expert Systems with Applications, 2012, 39(8): 7319-7329. [4]GAVALAS D, KENTERIS M. A web-based pervasive recommendation system for mobile tourist guides[J]. Personal & Ubiquitous Computing, 2011, 15(7): 759-770. [5]VINODHINI S, RAJALAKSHMI V, GOVINDARAJULU B. Building personalised recommendation system with big data and Hadoop mapreduce[J]. Metabolism Clinical & Experimental, 2009, 58(1): 38. [6]VERMA J P, PATEL B, PATEL A. Big data analysis: Recommendation system with Hadoop framework[C]∥IEEE International Conference on Computational Intelligence & Communication Technology. Ghaziabad: IEEE, 2015: 92-97. [7]ZHANG K, WANG K, WANG X, et al. Hotel recommendation based on user preference analysis[C]∥IEEE International Conference on Data Engineering Workshops. Seoul: IEEE, 2015:134-138. [8]GAO H, LI W. A hotel recommendation system based on collaborative filtering and Rankboost algorithm[C]∥International Conference on Multimedia & Information Technology. Kaifeng: IEEE, 2010: 317-320. [9]SALTON G, WONG A, YANG C S. A vector space model for automatic indexing[J]. Communications of the ACM, 1974, 18(11): 613-620. [10]AHN J W, BRUSILOVSKY P, GRADY J, et al. Open user profiles for adaptive news systems: Help or harm?[C]∥International Conference on World Wide Web, WWW 2007. Banff: Springer International Publishing, 2007: 11-20. [11]LI ZN, DREW M S, LIU J. Content-based retrieval in digital libraries[M]. Switzerland: Springer International Publishing, 2014: 93-95. [12]刘健, 毕强, 刘庆旭, 等. 数字文献资源内容服务推荐研究——基于本体规则推理和语义相似度计算[J]. 现代图书情报技术, 2016, 32(9): 70-77. LIU Jian, BI Qiang, LIU Qingxu, et al. New content recommendation service of digital literature[J]. New Technology of Library and Information Service, 2016, 32(9): 70-77. [13]江周峰, 杨俊, 鄂海红. 结合社会化标签的基于内容的推荐算法[J]. 软件, 2015, 36(1): 1-5. JIANG Zhoufeng, YANG Jun, E Haihong. A content-based recommendation algorithm with social tagging[J]. Software, 2015, 36(1): 1-5. [14]WANG M, ZHENG Y, QIU M, et al. Research on schedule-based user recommendation model based on improved K-means algorithm[J]. Journal of Computational Methods in Sciences & Engineering, 2016, 16(3): 1-10. [15]闫东东, 李红强. 一种改进的基于内容的个性化推荐模型[J]. 软件导刊, 2016, 15(4): 11-13. YAN Dongdong, LI Hongqiang. An improved content-based personalized recommendation model[J]. Software Guide, 2016, 15(4): 11-13. [16]李聪, 梁昌勇, 马丽. 基于领域最近邻的协同过滤推荐算法[J]. 计算机研究与发展, 2008, 45(9): 1532-1538. LI Cong, LIANG Changyong, MA Li. A collaborative filtering recommendation algorithm based on domain nearest neighbor[J]. Journal of Computer Research and Development, 2008, 45(9): 1532-1538. [17]黄创光, 印鉴, 汪静, 等. 不确定近邻的协同过滤推荐算法[J]. 计算机学报, 2010, 33(8): 1369-1377. HUANG Chuangguang, YIN Jian, WANG Jing, et al. Uncertain neighbors’ collaborative filtering recommendation algorithm[J]. Chinese Journal of Computers, 2010, 33(8): 1369-1377. [18]WANG Z, LI Q, LIU Y, et al. Online personalized recommendation based on streaming implicit user feedback[C]∥Asia-Pacific Web Conference. Guangzhou, China: Springer International Publishing, 2015: 720-731. [19]王琳琳. 基于协同过滤的在线学习个性化推荐技术研究[J]. 微型电脑应用, 2017, 33(5): 49-51. WANG Linlin. Research on personalized recommendation technology of online learning based on collaborative filtering[J]. Microcomputer Applications, 2017, 33(5): 49-51. [20]应毅, 刘亚军, 陈诚. 基于云计算技术的个性化推荐系统[J]. 计算机工程与应用, 2015, 51(13): 111-117. YING Yi, LIU Yajun, CHEN Cheng. Personalization recommender system based on cloud-computing technology[J]. Computer Engineering and Applications, 2015, 51(13): 111-117. [21]SALAKHUTDINOV R, MNIH A, HINTON G. Restricted Boltzmann machines for collaborative filtering[C]∥Proceedings of the 24th International Conference on Machine Learning. Corvallis: ACM, 2007: 791-798. [22]HE X, LIAO L, ZHANG H, et al. Neural collaborative filtering[C]∥Proceedings of the 26th International Conference on World Wide Web. Perth: Springer International Publishing, 2017: 173-182. [23]HOSMER D W, LEMESBOW S. Goodness of fit tests for the multiple logistic regression model[J]. Communications in Statistics, 1980, 9(10): 1043-1069. [24]CHEN T, HE T. Higgs boson discovery with boosted trees[C]∥NIPS 2014 Workshop on High-energy Physics and Machine Learning. Montreal: MIT Press, 2014: 69-80. |
[1] | 钱鹏, 王国亮, 朱文峰. 柔性变形下车窗升降三维装配公差建模及优化[J]. 上海交通大学学报, 2020, 54(11): 1134-1141. |
[2] | 包清临, 柴华奇, 赵嵩正, 王吉林. 采用机器学习算法的技术机会挖掘模型及应用[J]. 上海交通大学学报, 2020, 54(7): 705-717. |
[3] | 李柏鹤, 蒋祖华, 陶宁蓉, 孟令通, 郑虹. 考虑平板车合作运输的船舶分段堆场间调度[J]. 上海交通大学学报, 2020, 54(7): 718-727. |
[4] | 马仲航, 张执南. 多旋翼无人机遥操机械臂多功能仿真实验平台的设计与实现[J]. 上海交通大学学报, 2020, 54(6): 636-642. |
[5] | 孟令通, 蒋祖华, 陶宁蓉, 刘建峰, 郑虹. 考虑工艺顺序和组合分段的多堆场调度方法[J]. 上海交通大学学报, 2020, 54(4): 331-343. |
[6] | 张洁,赵新明,张朋,盛夏,晁晓娜,田凤祥. 面向火箭总装过程的工期延误预警方法[J]. 上海交通大学学报, 2020, 54(3): 322-330. |
[7] | 孙铭阳,颜国正,刘大生,王志武,韩玎,赵凯,杨雷. 基于超宽带技术的强制戒毒人员实时定位系统[J]. 上海交通大学学报, 2020, 54(1): 76-84. |
[8] | 章云港,杨剑锋,易本顺. 低剂量CT图像去噪的改进型残差编解码网络[J]. 上海交通大学学报, 2019, 53(8): 983-989. |
[9] | 王红雨,尹午荣,汪梁,胡江颢,乔文超. 基于HSV颜色空间的快速边缘提取算法[J]. 上海交通大学学报, 2019, 53(7): 765-772. |
[10] | 周炳海,刘文龙. 考虑能耗和准时的混合流水线多目标调度[J]. 上海交通大学学报, 2019, 53(7): 773-779. |
[11] | 孟令通,蒋祖华,陶宁蓉,刘建峰,李柏鹤. 船舶组合分段堆场调度方法[J]. 上海交通大学学报, 2019, 53(7): 780-788. |
[12] | 江旭东,李鹏飞,刘铮,滕晓艳. 基于剪切稀化效应的血液流体-扩张血管耦合模型的血管损伤分析[J]. 上海交通大学学报, 2019, 53(6): 757-764. |
[13] | 唐然,赵迎新,吴虹. 基于改进反馈判决的自动识别系统信号解调算法[J]. 上海交通大学学报, 2019, 53(5): 610-615. |
[14] | 叶仙,胡洁,田畔,戚进,车大钿,丁颖. 基于精细复合多尺度熵与支持向量机的睡眠分期[J]. 上海交通大学学报(自然版), 2019, 53(3): 321-326. |
[15] | 沈婷,孙锬锋,蒋兴浩. 基于双编码参数模型的同量化参数双压缩检测算法[J]. 上海交通大学学报(自然版), 2019, 53(3): 334-340. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||