上海交通大学学报 ›› 2018, Vol. 52 ›› Issue (7): 764-769.doi: 10.16183/j.cnki.jsjtu.2018.07.002
许孟孟1,2,冯正平1,2,毕安元1,2,樊斌3,姜涛3
发布日期:
2018-07-28
通讯作者:
冯正平,男,副教授,电话(Tel.):021-34207984;E-mail:zfeng@sjtu.edu.cn.
基金资助:
XU Mengmeng,FENG Zhengping,BI Anyuan,FAN Bin,JIANG Tao
Published:
2018-07-28
摘要: 复杂外形的潜水器动力学模型是高度非线性且耦合的,很难精确建立.为提高潜水器艏向控制性能,通过计算流体力学(CFD)方法来计算复杂外形无人遥控潜水器(ROV)在回转过程中所受的阻尼力/力矩,以获取回转运动的水动力系数,从而提高回转动力学建模精度.从如下两个方面对现有方法进行了改进:① 采用重叠网格方法替代动网格方法,解决网格运动过程中质量下降的问题,避免了网格单元出现负体积;② 结合移动参考坐标系和重叠网格两种方法求解ROV的旋转水动力,可加快收敛速度,提高重叠网格非稳态计算的可信度.采用由CFD计算得到的水动力系数构建 ROV的动力学模型并基于该模型进行回转控制数值模拟,计算结果与ROV在水池中的回转控制实验结果吻合较好,从而间接验证了所提方法的有效性.
中图分类号:
许孟孟1,2,冯正平1,2,毕安元1,2,樊斌3,姜涛3. 复杂外形潜水器旋转水动力的计算[J]. 上海交通大学学报, 2018, 52(7): 764-769.
XU Mengmeng,FENG Zhengping,BI Anyuan,FAN Bin,JIANG Tao. Rotational Hydrodynamic Calculation of Complex-Shaped Underwater Vehicle[J]. Journal of Shanghai Jiao Tong University, 2018, 52(7): 764-769.
[1]RENILSON M. Submarine hydrodynamics[J]. Underwater Technology, 2015, 33 (2): 137-138. [2]施生达.潜艇操纵性[M]. 北京: 国防工业出版社, 1995: 223-225. SHI Shengda. Submarine maneuverability[M]. Beijing: National University of Defense Industry Press, 1995: 223-225. [3]杨睿.水下机器人建模与鲁棒控制研究[D]. 青岛: 中国海洋大学工程学院, 2015. YANG Rui. Modeling and robust control approach for underwater vehicles[D]. Qingdao: College of Engineering, Ocean University of China, 2015. [4]PAN Y C, ZHOU Q D, ZHANG H X. Numerical simulation of rotating arm test for prediction of submarine rotary derivatives[J]. Journal of Hydrodynamics, 2015, 27(1): 68-75. [5]SHADLAGHANI A, MANSOORZADEH S. Calculation of linear damping coefficients by numerical simulation of steady state experiments[J]. Journal of Applied Fluid Mechanics, 2016, 9(2): 653-660. [6]TANG S, URA T, NAKATANI T, et al. Estimation of the hydrodynamic coefficients of the complex-shaped autonomous underwater vehicle TUNA-SAND[J]. Journal of Marine Science and Technology, 2009, 14 (3): 373-386. [7]MUNSON B R, HUEBSCH W W, ROTHMAYER A P. Fundamentals of fluid mechanics[J]. Biofluid Mechanics, 1990, 31(3): 11-48. [8]CHENG M. Modeling and testing of hydrodynamic damping model for a complex-shaped remotely-operated vehicle for control[J]. Journal of Marine Science and Application, 2012, 11(2): 150-163. [9]CARRICA P M, WILSON R V, NOACK R W, et al. Ship motions using single-phase level set with dynamic overset grids[J]. Computers & Fluids, 2007, 36(9): 1415-1433. [10]LI Yuwei, PAIK K J, XING Tao, et al. Dynamic overset CFD simulations of wind turbine aerodynamics[J]. Renewable Energy, 2012, 37(1): 285-298. [11]FOSSEN T I. Guidance and control of ocean vehicles[M]. New York: John Wiley & Sons Inc, 1994. [12]CD Adapco. STAR-CCM+user guide [EB/OL]. [2017-05-01]. http:∥www.cd-dapco.com/products/star_ccm_plus/. [13]许孟孟.具有复杂外形的ROV动力学建模及控制[D]. 上海: 上海交通大学船舶海洋与建筑工程学院, 2017. XU Mengmeng. Dynamic modeling and control of complex-shaped remotely operated vehicles[D]. Shanghai: School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 2017. |
[1] | 袁昱超,薛鸿祥,唐文勇. 计及平台垂荡的立管涡激振动模拟与试验验证[J]. 上海交通大学学报(自然版), 2019, 53(4): 480-487. |
[2] | 王盛炜,徐雪松,姚宝恒,连琏. 针对立管重入井过程中等路径段加速度的改进型蚁群优化算法[J]. 上海交通大学学报(自然版), 2013, 47(10): 1585-1590. |
[3] | 颜翚, 葛彤, 杨柯, 王旭阳. 水下攻泥器随钻姿态惯性测量方法[J]. 上海交通大学学报(自然版), 2012, 46(03): 446-450. |
[4] | 逯翔,冯正平,徐雪松. 基于图像处理的立管末端水下定位方法[J]. 上海交通大学学报(自然版), 2014, 48(12): 1802-1808. |
[5] | 刘晓媛,薛鸿祥,唐文勇. 轴向承载力作用下非粘结柔性立管的侧向失效分析[J]. 上海交通大学学报, 2018, 52(9): 1017-1022. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||