Highlights

    Please wait a minute...
    For Selected: Toggle Thumbnails
    Physical Characterization of Ionic Liquid-Modified Polyvinyl Alcohol and Sodium Thiocyanate Polymer Electrolytes for Electrochemical Double-Layer Capacitor Application
    AZEMTSOP Manfo Theodore , MEHRA Ram Mohan , KUMAR Yogesh , GUPTA Meenal
    J Shanghai Jiaotong Univ Sci    2023, 28 (2): 161-171.   DOI: 10.1007/s12204-021-2397-y
    Abstract44)      PDF (1140KB)(14)      
    Novel gel polymer electrolytes (GPEs) composed of polyvinyl alcohol (PVA) and sodium thiocyanate were developed via a solution casting technique. An ionic liquid (IL), 1-ethyl-3-methyl-imidazolium tricyanomethanide ([EMIM][TCM]), was doped into a polymer–salt complex system (PVA + NaSCN) to further enhance the conductivity. IL-doped polymer electrolyte (ILDPE) films were characterized using X-ray diffraction (XRD), polarized optical microscopy (POM), Fourier-transform infrared (FTIR) spectroscopy, and conductivity measurements. XRD was performed to check the degree of crystallinity and amorphicity of the ILDPE films, and the amorphicity of GPEs increased with the increase of the IL content. POM was employed to evaluate the changes in the surface morphology due to the inclusion of salt and IL in the PVA. The compositional nature of the GPE films was examined via FTIR studies. The electrical and electrochemical properties were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The maximum conductivity for the GPE film was estimated to be 1.10 × 10-5 S/cm for 6% (mass fraction) of IL in the polymer–salt complex. The ionic transference number was approximately 0.97. An electrochemical double-layer capacitor (EDLC) was built from optimized GPE films and reduced graphene oxide-based electrodes. The specific capacitance calculated from the cyclic voltammograms of the EDLC cells was 3 F/g.
    Reference | Related Articles | Metrics
    Synthesis and Characterization of Copper Doped Zinc Oxide Thin Films Deposited by RF/DC Sputtering Technique
    KHAN Mohibul, ALAM Md. Shabaz, AHMED Sk. Faruque∗
    J Shanghai Jiaotong Univ Sci    2023, 28 (2): 172-179.   DOI: 10.1007/s12204-022-2462-1
    Abstract26)      PDF (698KB)(4)      
    Undoped and copper (Cu) doped zinc oxide (Zn1-xCuxO, where x = 0—0.065) nano crystal thin films have been deposited on glass substrate via RF/DC reactive co-sputtering technique. The aim of this work is to investigate the crystal structure of ZnO and Cu doped ZnO thin films and also study the effect of Cu doping on optical band gap of ZnO thin films. The identification and confirmation of the crystallinity, film thickness and surface morphology of the nano range thin films are confirmed by using X-ray diffractometer (XRD), scanning electron microscope and atomic force microscope. The XRD peak at a diffractive angle of 34.44° and Miller indices at (002) confirms the ZnO thin films. Crystallite size of undoped ZnO thin films is 27 nm and decreases from 27 nm to 22 nm with increasing the atomic fraction of Cu (xCu) in the ZnO thin films from 0 to 6.5% respectively, which is calculated from XRD (002) peaks. The different bonding information of all deposited films was investigated by Fourier transform infrared spectrometer in the range of wave number between 400 cm-1 to 4 000 cm-1. Optical band gap energy of all deposited thin films was analyzed by ultraviolet visible spectrophotometer, which varies from 3.35 eV to 3.19 eV with the increase of xCu from 0 to 6.5% respectively. Urbach energy of the deposited thin films increases from 115 meV to 228 meV with the increase of xCu from 0 to 6.5% respectively.
    Reference | Related Articles | Metrics
    Band Structure Characteristics of Two-Dimensional Si-A (Ge, Pb, Sn) Alloy-Air Holes Thermal Crystals
    AZKA Umar ∗, JIANG Chun (姜 淳), KHUSHIK Muhammad Hanif Ahmed Khan
    J Shanghai Jiaotong Univ Sci    2023, 28 (2): 180-185.   DOI: 10.1007/s12204-022-2485-7
    Abstract25)      PDF (539KB)(3)      
    This paper designs the thermal crystals composed of alloy materials with air holes and analyzes their properties of band structures, heat transmission, and flux spectra. Thermal crystals composed of Si-A (A=Ge, Sn, Pb) alloys as background materials and air holes with square array are used to construct an elastic-constant periodic structure and their high-frequency phononic band is calculated by deploying finite element methods. Moreover, this paper investigates heat transmission through a finite array of thermally excited phonons and presents the thermal crystal with maximum heat transport. The results show that a wider bandgap could be achieved by increasing the air hole radius and decreasing the lattice constant. In the alloy materials, with increasing atomic radius and thus atomic mass (Ge, Sn, Pb), the frequency range (contributed to thermal conductivity) shifts towards lower frequency. Hence, the bandgap frequencies also shift toward low frequency, but this decreasing rate is not constant or in order, so former may have a faster or slower decreasing rate than the later. Thus, the frequency range for the contribution of heat transportation overlaps with the bandgap frequency range. The development of thermal crystals is promising for managing heat and controlling the propagation of the thermal wave.
    Reference | Related Articles | Metrics