J Shanghai Jiaotong Univ Sci ›› 2023, Vol. 28 ›› Issue (3): 360-369.doi: 10.1007/s12204-023-2603-1
• Special Issue on Advanced Technologies for Medical Robotics • Previous Articles Next Articles
JIANG Rui1*(姜﹐锐),ZHU Ruiriang1(朱瑞祥),CAI Xiaocui1(蔡萧萃),SU Hu2(苏虎)
Received:
2022-12-27
Revised:
2023-01-11
Accepted:
2023-05-28
Online:
2023-05-28
Published:
2023-05-22
CLC Number:
JIANG Rui1*(姜﹐锐),ZHU Ruiriang1(朱瑞祥),CAI Xiaocui1(蔡萧萃),SU Hu2(苏虎). Foreground Segmentation Network with Enhanced Attention[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 360-369.
[1] | MANDAL M, VIPPARTHI S K. An empirical review of deep learning frameworks for change detection: Model design, experimental frameworks, challenges and research needs [J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 6101-6122. |
[2] | BOUWMANS T, JAVED S, SULTANA M, et al. Deep neural network concepts for background subtraction: A systematic review and comparative evaluation [J]. Neural Networks, 2019, 117: 8-66. |
[3] | RAMAMOORTHY M, BANU U S. Video enhancement for medical and surveillance applications [J]. Current Medical Imaging Reviews, 2017, 13(2): 195-203. |
[4] | CHEN M Q, ZHENG Y F, MUELLER K, et al. Enhancement of organ of interest via background subtraction in cone beam rotational angiocardiogram [C]//2012 9th IEEE International Symposium on Biomedical Imaging. Barcelona: IEEE, 2012: 622-625. |
[5] | JIANG R, ZHU R, SU H, et al. Deep learning-based moving object segmentation: Recent progress and research prospects [J]. Machine Intelligence Research, 2023. http://doi.org/10.1007/s11633-022-1378-4 |
[6] | LIM L A, YALIM KELES H. Foreground segmentation using convolutional neural networks for multiscale feature encoding [J]. Pattern Recognition Letters, 2018, 112: 256-262. |
[7] | LIM L A, KELES H Y. Learning multi-scale features for foreground segmentation [J]. Pattern Analysis and Applications, 2020, 23(3): 1369-1380. |
[8] | WANG Y, JODOIN P M, PORIKLI F, et al. CD-net 2014: An expanded change detection benchmark dataset [C]//2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Columbus: IEEE, 2014: 393-400. |
[9] | TEZCAN M O, ISHWAR P, KONRAD J. BSUV-net: A fully-convolutional neural network for background subtraction of unseen videos [C]//2020 IEEE Winter Conference on Applications of Computer Vision. Snowmass: IEEE, 2020: 2763-2772. |
[10] | YANG Y Z, RUAN J H, ZHANG Y Q, et al. STP-Net: A spatial-temporal propagation network for back-ground subtraction [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(4): 2145-2157. |
[11] | ZHANG J, ZHANG X, ZHANG Y Y, et al. Meta-knowledge learning and domain adaptation for unseen background subtraction [J]. IEEE Transactions on Image Processing, 2021, 30: 9058-9068. |
[12] | POSNER M I, PETERSEN S E. The attention system of the human brain [J]. Annual Review of Neuroscience, 1990, 13: 25-42. |
[13] | GUO M H, XU T X, LIU J J, et al. Attention mechanisms in computer vision: A survey [J]. Computational Visual Media, 2022, 8(3): 331-368. |
[14] | DE SANTANA CORREIA A, COLOMBINI E L. Attention, please! A survey of neural attention models in deep learning [J]. Artificial Intelligence Review, 2022, 55(8): 6037-6124. |
[15] | PATIL P W, DUDHANE A, MURALA S, et al. Deep adversarial network for scene independent moving object segmentation [J]. IEEE Signal Processing Letters, 2021, 28: 489-493. |
[16] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [DB/OL]. (2014-09-04). https://arxiv.org/abs/ 1409.1556 |
[17] | AKILAN T, JONATHAN WU Q M, ZHANG W D. Video foreground extraction using multi-view receptive field and encoder–decoder DCNN for traffic and surveillance applications [J]. IEEE Transactions on Vehicular Technology, 2019, 68(10): 9478-9493. |
[18] | AKILAN T, JONATHAN WU Q M. sEnDec: An improved image to image CNN for foreground localization [J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(10): 4435-4443. |
[19] | LIANG D, WEI Z Q, SUN H, et al. Robust cross-scene foreground segmentation in surveillance video [C]//2021 IEEE International Conference on Multimedia and Expo. Shenzhen: IEEE, 2021: 1-6. |
[20] | MANDAL M, DHAR V, MISHRA A, et al. 3DFR: A swift 3D feature reductionist framework for scene independent change detection [J]. IEEE Signal Processing Letters, 2019, 26(12): 1882-1886. |
[21] | MANDAL M, DHAR V, MISHRA A, et al. 3DCD: Scene independent end-to-end spatiotemporal feature learning framework for change detection in unseen videos [J]. IEEE Transactions on Image Processing, 2021, 30: 546-558. |
[22] | AKILAN T, WU Q J, SAFAEI A, et al. A 3D CNN-LSTM-based image-to-image foreground segmentation [J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 959-971. |
[23] | TUNG H, ZHENG C, MAO X S, et al. Multi-lead ECG classification via an information-based attention convolutional neural network [J]. Journal of Shanghai Jiao Tong University (Science), 2022, 27(1): 55-69. |
[24] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141. |
[25] | LIU J J, HOU Q B, CHENG M M, et al. Improving convolutional networks with self-calibrated convolutions [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10093-10102. |
[26] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [M]//Computer vision – ECCV 2018. Cham: Springer, 2018: 3-19. |
[27] | PARK J, WOO S, LEE J Y, et al. BAM: Bottleneck attention module [DB/OL]. (2018-07-17). https://arxiv.org/abs/1807.06514 |
[28] | CHEN Y Y, WANG J Q, ZHU B K, et al. Pixelwise deep sequence learning for moving object detection [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(9): 2567-2579. |
[29] | LIANG D, LIU X Y. Coarse-to-fine foreground segmentation based on Co-occurrence pixel-block and spatio-temporal attention model [C]//2020 25th International Conference on Pattern Recognition. Milan: IEEE, 2021: 3807-3813. |
[30] | LIANG D, KANG B, LIU X Y, et al. Cross-scene foreground segmentation with supervised and unsupervised model communication [J]. Pattern Recognition, 2021, 117: 107995. |
[31] | TANG Y Q, ZHANG X, CHEN D H, et al. Motion-augmented change detection for video surveillance [C]//2021 IEEE 23rd International Workshop on Mul-timedia Signal Processing. Tampere: IEEE, 2021: 1-6. |
[32] | HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification [C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1026-1034. |
[33] | ZENG D D, ZHU M. Background subtraction using multiscale fully convolutional network [J]. IEEE Access, 2018, 6: 16010-16021. |
[34] |
[1] | ZHU Kai, (祝 楷), XIONG Baiqing, ∗ (熊柏青), YAN Hongwei, (闫宏伟), ZHANG Yongan, (张永安), LI Zhihui, (李志辉), LI Xiwu, (李锡武), LIU Hongwei, (刘红伟), WEN Kai, (温 凯), YAN Lizhen, (闫丽珍). Numerical Simulation on the Effect of Conveyor Velocity of the Roller Table on Stress Distribution and Evolution in Large Aluminum Alloy Thick Plates [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(2): 255-263. |
[2] | CAI Shuyu∗ (蔡舒妤), SHI Lizhong (师利中). Airframe Damage Region Division Method Based on Structure Tensor Dynamic Operator [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(6): 757-767. |
[3] | KANG Jie* (亢洁), DING Jumin (丁菊敏), LEI Tao (雷涛),FENG Shujie (冯树杰), LIU Gang (刘港). Interactive Liver Segmentation Algorithm Based on Geodesic Distance and V-Net [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 190-201. |
[4] | LIU Xiaoying* (刘晓颖), YUE Yong(岳勇), WANG Chongning (王宠宁), HUANG Jiazan (黄家赞),HUANG Xianwei(黄贤伟), HAO Yanhua(郝艳华). Topology Optimization Method for Calcaneal Prosthesis [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 240-249. |
[5] | WANG Zheng (王正), XU Hui (许辉), L v Na (吕娜), TAO Wei∗ (陶卫), CHEN Guodong (陈国栋), CHI Wenzheng (迟文正), SUN Lining (孙立宁). Dynamic Obstacle Avoidance for Application of Human-Robot Cooperative Dispensing Medicines [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 24-35. |
[6] | ZHANG Yue (张月), LIU Shijie (刘世界), LI Chunlai (李春来), WANG Jianyu (王建宇). Application of Deep Learning Method on Ischemic Stroke Lesion Segmentation [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 99-111. |
[7] | LIU Quanchen (刘权宸), ZHANG Pengzhu∗ (张鹏翥). Panoramic and Personalised Intelligent Healthcare Mode [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 121-136. |
[8] | CHEN Ziyun (陈子云), XIE Le (谢叻), DAI Peidong (戴培东), ZHANG Tianyu (张天宇). Development of a Robotic Cochlear Implantation System [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 7-14. |
[9] | ZOU Yue (邹 悦), LI Lin (李 霖), YANG Xubo (杨旭波). Lightweight Method for Vehicle Re-identification Using Reranking Algorithm Based on Topology Information of Surveillance Network [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 577-586. |
[10] | LI Lin (李 霖), HU Zeyu(胡泽宇), YANG Xubo (杨旭波). Intelligent Analysis of Abnormal Vehicle Behavior Based on a Digital Twin [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 587-597. |
[11] | HUANG Mengting (黄梦婷), YI Yuhan (易雨菡), ZHANG Guanglin∗ (张光林). Service Caching and Task Offloading for Mobile Edge Computing-Enabled Intelligent Connected Vehicles [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 670-679. |
[12] | SHI Lianxing (石连星), WANG Zhiheng (王志恒), LI Xiaoyong (李小勇) . Novel Data Placement Algorithm for Distributed Storage System Based on Fault-Tolerant Domain [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 463-470. |
[13] | ZHAN Zhu (占竹), ZHANG Wenjun (张文俊), CHEN Xia (陈霞), WANG Jun (汪军) . Objective Evaluation of Fabric Flatness Grade Based on Convolutional Neural Network [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 503-510. |
[14] | LIU Ziwen (刘子文), XIAO Lei (肖雷), BAO Jinsong (鲍劲松), TAO Qingbao (陶清宝) . Bearing Incipient Fault Detection Method Based on Stochastic Resonance with Triple-Well Potential System [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 482-487. |
[15] | MA Qunsheng (马群圣), CEN Xingxing (岑星星), YUAN Junyi (袁骏毅), HOU Xumin (侯旭敏). Word Embedding Bootstrapped Deep Active Learning Method to Information Extraction on Chinese Electronic Medical Record [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 494-502. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||