[1] NG C F. Training in percutaneous nephrolithotomy:The learning curve and options [J]. Arab Journal ofUrology, 2014, 12(1): 54-57.
[2] STERN J, ZELTSER I S, PEARLE M S. Percutaneous renal access simulators [J]. Journal of Endourology, 2007, 21(3): 270-273.
[3] MISHRA S, SABNIS R B, DESAI M. Staghorn morphometry: A new tool for clinical classification andprediction model for percutaneous nephrolithotomymonotherapy [J]. Journal of Endourology, 2012, 26(1):6-14.
[4] ALLEN D, O’BRIEN T, TIPTAFT R, et al. Definingthe learning curve for percutaneous nephrolithotomy[J]. Journal of Endourology, 2005, 19(3): 279-282.
[5] DE LA ROSETTE J, ASSIMOS D, DESAI M, etal. The Clinical Research Office of the EndourologicalSociety Percutaneous Nephrolithotomy Global Study:Indications, complications, and outcomes in 5 803 patients [J]. Journal of Endourology, 2011, 25(1): 11-17.
[6] YOON J W, CHEN R E, KIM E J, et al. Augmentedreality for the surgeon: Systematic review [J]. The International Journal of Medical Robotics and ComputerAssisted Surgery, 2018, 14(4): e1914.
[7] JUTZI S, IMKAMP F, KUCZYK M A, et al. New exvivo organ model for percutaneous renal surgery usinga laparoendoscopic training box: The sandwich model[J]. World Journal of Urology, 2014, 32(3): 783-789.
[8] KALLIDONIS P, KYRIAZIS I, VASILAS M, et al.Modular training for percutaneous nephrolithotripsy:The safe way to go [J]. Arab Journal of Urology, 2015,13(4): 270-276.
[9] VIJAYAKUMAR M, BALAJI S, SINGH A, et al. Anovel biological model for training in percutaneous renal access [J]. Arab Journal of Urology, 2019, 17(4):292-297.
[10] VENEZIANO D, SMITH A, REIHSEN T, et al. TheSimPORTAL fluoro-less C-arm trainer: An innovativedevice for percutaneous kidney access [J]. Journal ofEndourology, 2015, 29(2): 240-245.
[11] TURNEY B W. A new model with an anatomicallyaccurate human renal collecting system for training influoroscopy-guided percutaneous nephrolithotomy access [J]. Journal of Endourology, 2014, 28(3): 360-363.
[12] KLEIN J T, RASSWEILER J, RASSWEILERSEYFRIED M C. Validation of a novel cost effective easy to produce and durable in vitro model forkidney-puncture and percutaneous nephrolitholapaxysimulation [J]. Journal of Endourology, 2018, 32(9):871-876.
[13] MISHRA S, KURIEN A, PATEL R, et al. Validation ofvirtual reality simulation for percutaneous renal accesstraining [J]. Journal of Endourology, 2010, 24(4): 635-640.
[14] RANGARAJAN K, DAVIS H, PUCHER P H. Systematic review of virtual haptics in surgical simulation: Avalid educational tool? [J]. Journal of Surgical Education, 2020, 77(2): 337-347.
[15] MISRA S, RAMESH K T, OKAMURA A M. Modelingof tool-tissue interactions for computer-based surgicalsimulation: A literature review [J]. Presence, 2008,17(5): 463.
[16] BOTDEN S M B I, TORAB F, BUZINK S N, et al.The importance of haptic feedback in laparoscopic suturing training and the additive value of virtual realitysimulation [J]. Surgical Endoscopy, 2008, 22(5): 1214-1222.
[17] DETMER F J, HETTIG J, SCHINDELE D, et al.Virtual and augmented reality systems for renal interventions: A systematic review [J]. IEEE Reviews inBiomedical Engineering, 2017, 10: 78-94.
[18] JAVIA L, SARDESAI M G. Physical models and virtual reality simulators in otolaryngology [J]. Otolaryngologic Clinics of North America, 2017, 50(5): 875-891.
[19] SCHIAVINA R, BIANCHI L, CHESSA F, et al. Augmented reality to guide selective clamping and tumordissection during robot-assisted partial nephrectomy:A preliminary experience [J]. Clinical GenitourinaryCancer, 2021, 19(3): e149-e155.
[20] CHAUVET P, COLLINS T, DEBIZE C, et al. Augmented reality in a tumor resection model [J]. SurgicalEndoscopy, 2018, 32(3): 1192-1201.
[21] LU S, SANCHEZ PERDOMO Y P, JIANG X T, et al.Integrating eye-tracking to augmented reality systemfor surgical training [J]. Journal of Medical Systems,2020, 44(11): 1-7.
[22] BOTDEN S M, BUZINK S N, SCHIJVEN M P, etal. Augmented versus virtual reality laparoscopic simulation: what is the difference? [J]. World Journal ofSurgery, 2007, 31(4): 764-772.
[23] MüLLER M, RASSWEILER M C, KLEIN J, et al.Mobile augmented reality for computer-assisted percutaneous nephrolithotomy [J]. International Journal ofComputer Assisted Radiology and Surgery, 2013, 8(4):663-675.
[24] APPELBAUM L, SOSNA J, NISSENBAUM Y, etal. Electromagnetic navigation system for CT-guidedbiopsy of small lesions [J]. AJR American Journal ofRoentgenology, 2011, 196(5): 1194-1200.
[25] WU J H, ZHOU P Y, LUO X, et al. Novel laserpositioning navigation to aid puncture during percutaneous nephrolithotomy: A preliminary report [J].World Journal of Urology, 2019, 37(6): 1189-1196.
[26] FICHTINGER G, DEGUET A, MASAMUNE K, etal. Image overlay guidance for needle insertion in CTscanner [J]. IEEE Transactions on Bio-Medical Engineering, 2005, 52(8): 1415-1424.
[27] RACADIO J M, NACHABE R, HOMAN R, et al.Augmented reality on a C-arm system: A preclinical assessment for percutaneous needle localization [J].Radiology, 2016, 281(1): 249-255.
[28] SOLBIATI M, PASSERA K M, ROTILIO A, et al.Augmented reality for interventional oncology: Proofof-concept study of a novel high-end guidance systemplatform [J]. European Radiology Experimental, 2018,2: 18. |