J Shanghai Jiaotong Univ Sci ›› 2022, Vol. 27 ›› Issue (5): 614-620.doi: 10.1007/s12204-022-2416-7
• Automation System & Theory • Previous Articles Next Articles
LI Shiqi1 (李世其), LI Xiao1∗ (李肖), HAN Ke1 (韩可), XIONG Youjun2 (熊友军), XIE Zheng2 (谢铮), CHEN Jinliang2 (陈金亮)
Received:
2021-05-18
Online:
2022-09-28
Published:
2022-09-03
CLC Number:
LI Shiqi (李世其), LI Xiao∗ (李肖), HAN Ke (韩可), XIONG Youjun (熊友军), XIE Zheng (谢铮), CHEN Jinliang (陈金亮). Path Planning and Optimization of Humanoid Manipulator in Cartesian Space[J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 614-620.
[1] | YANG T, ZOU H B, LIU X Y, et al. Simulated research on synchronization control of humanoid manipulator [J]. Computer Simulation, 2019, 36(7): 302-307 (in Chinese). |
[2] | PANDEY A K, GELIN R. A mass-produced sociable humanoid robot: Pepper: the first machine of its kind [J]. IEEE Robotics & Automation Magazine, 2018, 25(3): 40-48. |
[3] | OKITA S Y, NG-THOW-HING V, SARVADEVABHATLA R. Learning together: ASIMO developing an interactive learning partnership with children [C]//RO-MAN 2009—The 18th IEEE International Symposium on Robot and Human Interactive Communication. Toyama, Japan: IEEE, 2009: 1125-1130. |
[4] | LV H H, YANG G, ZHOU H Y, et al. Teleoperation of collaborative robot for remote dementia care in home environments [J]. IEEE Journal of Translational Engineering in Health and Medicine, 2020, 8: 1400510. |
[5] | ACKERMAN E. UBTECH shows off massive upgrades to Walker humanoid robot [EB/OL]. (2019-01- 08). https: // spectrum.ieee.org/automaton/robotics/ humanoids/ubtech-upgrades-Walker-humanoid-robot. |
[6] | BAKERW, KINGSTON Z, MOLL M, et al. Robonaut 2 and You: Specifying and executing complex operations [C]//2017 IEEE Workshop on Advanced Robotics and its Social Impacts. Austin, TX, USA: IEEE, 2017: 1-8. |
[7] | SCHMAUS P, LEIDNER D, KR¨UGER T, et al. Preliminary insights from the METERON SUPVIS Justin space-robotics experiment [J]. IEEE Robotics and Automation Letters, 2018, 3(4): 3836-3843. |
[8] | HUO F C, CHI J, HUANG Z J, et al. Review of path planning for mobile robots [J]. Journal of Jilin University (Information Science Edition), 2018, 36(6): 639- 647 (in Chinese). |
[9] | CHEN Q L, JIANG H Y, ZHENG Y J. Summary of rapidly-exploring random tree algorithm in robot path planning [J]. Computer Engineering and Applications, 2019, 55(16): 10-17 (in Chinese). |
[10] | KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots [J]. The International Journal of Robotics Research, 1986, 5(1): 90-98. |
[11] | GAI S N, SUN R, CHEN S J, et al. 6-DOF robotic obstacle avoidance path planning based on artificial potential field method [C]//2019 16th International Conference on Ubiquitous Robots. Jeju, Korea: IEEE, 2019: 165-168. |
[12] | QI R L, ZHOU W J, WANG T J. An obstacle avoidance trajectory planning scheme for space manipulators based on genetic algorithm [J]. Robot, 2014, 36(3): 263-270 (in Chinese). |
[13] | WU C J, ZHOU S J, XIAO L C. Dynamic path planning based on improved ant colony algorithm in traffic congestion [J]. IEEE Access, 2020, 8: 180773-180783. |
[14] | LI F, JIANG Q, QUANW, et al. Manipulation skill acquisition for robotic assembly using deep reinforcement learning [C]//2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Hong Kong, China: IEEE, 2019: 13-18. |
[15] | KAMALI K, BONEV I A, DESROSIERS C. Realtime motion planning for robotic teleoperation using dynamic-goal deep reinforcement learning [C]//2020 17th Conference on Computer and Robot Vision. Ottawa, Canada: IEEE, 2020: 182-189. |
[16] | RAVANKAR A A, RAVANKAR A, EMARU T, et al. HPPRM: hybrid potential based probabilistic roadmap algorithm for improved dynamic path planning of mobile robots [J]. IEEE Access, 2020, 8: 221743-221766. |
[17] | SIMONIN E, DIARD J. BBPRM: a behavior-based probabilistic roadmap method [C]//2008 IEEE International Conference on Systems, Man and Cybernetics. Singapore: IEEE, 2008: 1719-1724. |
[18] | LAVALLE S M . Rapidly-exploring random trees: A new tool for path planning [EB/OL]. [2021-05-18]. https://www.cs.csustan.edu/~xliang/Courses/CS4710- 21S/Papers/06%20RRT.pdf. |
[19] | SUN F C, ZHANG Y N, SHI X H. Improved rapidly-exploring random tree path planning algorithm [J]. Transducer and Microsystem Technologies, 2017, 36(9): 129-131 (in Chinese). |
[20] | KUFFNER J J, LAVALLE S M. RRT-connect: An efficient approach to single-query path planning [C]//IEEE International Conference on Robotics and Automation. San Francisco, CA, USA: IEEE, 2000: 995-1001. |
[21] | KARAMAN S, FRAZZOLI E. Incremental samplingbased algorithms for optimal motion planning [M]//Robotics: Science and systems VI. Cambridge, MA, USA: MIT Press, 2011. |
[22] | KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning [J]. The International Journal of Robotics Research, 2011, 30(7):846- 894. |
[23] | GAMMELL J D, SRINIVASA S S, BARFOOT T D. Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic [C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, IL, USA: IEEE, 2014: 2997-3004. |
[24] | LIU J Y, FAN P Q. Path planning of manipulator based on improved RRT*-connect algorithm [J]. Computer Engineering and Applications, 2021, 57(6): 274- 278 (in Chinese). |
[25] | LIU Y L, ZUO G Y. Improved RRT path planning algorithm for humanoid robotic arm [C]//2020 Chinese Control and Decision Conference. Hefei, China: IEEE, 2020: 397-402. |
[26] | BORDALBA R, ROS L, PORTA J M. A randomized kinodynamic planner for closed-chain robotic systems [J]. IEEE Transactions on Robotics, 2021, 37(1): 99- 115. |
[1] | CAO Bingquan1,2,3 (曹炳全), HE Yuesheng1,2,3∗ (贺越生), ZHUANG Hanyang4 (庄瀚洋), YANG Ming1,2,3 (杨 明). Infrastructure-Based Vehicle Localization System for Indoor Parking Lot Using RGB-D Cameras [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 61-69. |
[2] | MAO Tianyang (茅天阳), ZHAO Wentao (赵文韬), WANG Jingchuan∗ (王景川), CHEN Weidong (陈卫东). Lidar-Visual-Inertial Odometry with Online Extrinsic Calibration [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 70-76. |
[3] | LI Erchao∗ (李二超), QI Kuankuan (齐款款). Ant Colony Algorithm Path Planning Based on Grid Feature Point Extraction [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 86-99. |
[4] | YU Xinyi (禹鑫燚), WU Jiaxin (吴加鑫), XU Chengjun (许成军), LUO Huizhen (罗惠珍), OU Linlin∗ (欧林林). Adaptive Human-Robot Collaboration Control Based on Optimal Admittance Parameters [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 589-601. |
[5] | LÜ Qibing (吕其兵), LIU Tianyuan (刘天元), ZHANG Rong (张荣), JIANG Yanan (江亚南), XIAO Lei (肖雷), BAO Jingsong∗ (鲍劲松). Generation Approach of Human-Robot Cooperative Assembly Strategy Based on Transfer Learning [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 602-613. |
[6] | ZHAO Chenliang (赵晨亮), ZHANG Xiuli∗ (张秀丽), HUANG Senwei (黄森威), YAO Yan’an (姚燕安). Effects of Elastic Joints on Performances of a Close-Chained Rod Rolling Robot [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 621-630. |
[7] | HUO Qianjun (霍前俊), LIU Sheng∗ (刘胜), XU Qingyu (徐青瑜), ZHANG Yuanfei (张远飞), ZHANG Yaoyao (张耀耀), LI Xu (李旭). Bending Prediction Method of Multi-Cavity Soft Actuator [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 631-637. |
[8] | LIU Dasheng∗ (刘大生), YAN Guozheng (颜国正). Biomechanical Analysis of a Radial Expansion Mechanism of Intestinal Robot Coupling with Hyperelastic Intestinal Wall [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 552-560. |
[9] | LI Yanbiao∗ (李研彪), CHEN Ke (陈 科), SUN Peng (孙 鹏), WANG Zesheng (王泽胜). Dynamic Modeling and Performance Evaluation of a Novel Humanoid Ankle Joint [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 570-578. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 167
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 450
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||