Optimum Consecutive Preventive Maintenance Scheduling Model Considering Reliability
Optimum Consecutive Preventive Maintenance Scheduling Model Considering Reliability
LIU Gehui (刘葛辉), LONG Xiangyu (龙翔宇), TONG Shuo (仝硕), ZHANG Rui (张瑞), CHEN Shaokuan* (陈绍宽)
(1. MOT Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport,
Beijing Jiaotong University, Beijing 100044, China; 2. CHELBI Engineering Consultants, Inc., Beijing 100029, China;
3. Beijing Transport Institute, Beijing 100073, China)
(1. MOT Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport,
Beijing Jiaotong University, Beijing 100044, China; 2. CHELBI Engineering Consultants, Inc., Beijing 100029, China;
3. Beijing Transport Institute, Beijing 100073, China)
[1] EL-FERIK S. Economic production lot-sizing for anunreliable machine under imperfect age-based maintenancepolicy [J]. European Journal of Operational Research,2008, 186(1): 150-163.
[2] BROWM M, PROSCHAN F. Imperfect repair [J].Journal of Applied Probability, 1983, 20(4): 851-859.
[3] OUYANG Y, MADANAT S. Optimal scheduling of rehabilitationactivities for multiple pavement facilities:Exact and approximate solutions [J]. TransportationResearch Part A: Policy and Practice, 2004, 38(5):347-365.
[4] CHEN S K, PENG H Q, MAO B H, et al. Optimizationmodel of least-cost-based maintenance schedules forrailway traction substations [J]. Journal of the ChinaRailway Society, 2011, 33(8): 39-44 (in Chinese).
[5] NAKAGAWA T. Sequential imperfect preventivemaintenance policies [J]. IEEE Transactions on Reliability,1988, 37(3): 295-298.
[6] MALIK M A K. Reliable preventive maintenancescheduling [J]. AIIE Transactions, 1979, 11(3): 221-228.
[7] ZHAO Y C. Optimum maintenance scheduling for locomotivesthrough preventive maintenance strategy[D]. Beijing: Beijing Jiaotong University, 2016.