J Shanghai Jiaotong Univ Sci ›› 2021, Vol. 26 ›› Issue (1): 93-102.doi: 10.1007/s12204-021-2264-x
• Medicine-Engineering Interdisciplinary Research • Previous Articles Next Articles
ZHANG Yue (张月), LIU Shijie (刘世界), LI Chunlai (李春来), WANG Jianyu (王建宇)
Online:
2021-02-28
Published:
2021-01-19
Contact:
WANG Jianyu (王建宇)
E-mail: jywang@mail.sitp.ac.cn
CLC Number:
ZHANG Yue (张月), LIU Shijie (刘世界), LI Chunlai (李春来), WANG Jianyu (王建宇). Rethinking the Dice Loss for Deep Learning Lesion Segmentation in Medical Images[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 93-102.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/sjtu_en/EN/10.1007/s12204-021-2264-x
[1] | GARC′IA-LORENZO D, FRANCIS S, NARAYANAN S, et al. Review of automatic segmentation methodsof multiple sclerosis white matter lesions on conventionalmagnetic resonance imaging [J]. Medical ImageAnalysis, 2013, 17(1): 1-18. |
[2] | SARITHA S, PRABHA N A. A comprehensive review:Segmentation of MRI images — brain tumor [J]. InternationalJournal of Imaging Systems and Technology,2016, 26(4): 295-304. |
[3] | WADHWA A, BHARDWAJ A, VERMA V S. A reviewon brain tumor segmentation of MRI images [J].Magnetic Resonance Imaging, 2019, 61: 247-259. |
[4] | WEEDA M M, BROUWER I, DE VOS M L, et al.Comparing lesion segmentation methods in multiplesclerosis: Input from one manually delineated subjectis sufficient for accurate lesion segmentation [J]. NeuroImage:Clinical, 2019, 24: 102074. |
[5] | BERNAL J, KUSHIBAR K, ASFAW D S, et al. Deepconvolutional neural networks for brain image analysison magnetic resonance imaging: A review [J]. ArtificialIntelligence in Medicine, 2019, 95: 64-81. |
[6] | KERVADEC H, BOUCHTIBA J, DESROSIERS C, etal. Boundary loss for highly unbalanced segmentation[J]. Medical Image Analysis, 2021, 67: 101851. |
[7] | CHEN C, QIN C, QIU H Q, et al. Deep learning forcardiac image segmentation: A review [J]. Frontiers inCardiovascular Medicine, 2020, 7: 25. |
[8] | IS?IN A, DIREKOˇGLU C, S?AH M. Review of MRIbasedbrain tumor image segmentation using deeplearning methods [J]. Procedia Computer Science,2016, 102: 317-324. |
[9] | JAAFRA Y, LAURENT J L, DERUYVER A, et al.Reinforcement learning for neural architecture search:A review [J]. Image and Vision Computing, 2019, 89:57-66. |
[10] | MAKROPOULOS A, COUNSELL S J, RUECKERTD. A review on automatic fetal and neonatal brainMRI segmentation [J]. NeuroImage, 2018, 170: 231-248. |
[11] | SCHMIDHUBER J. Deep learning in neural networks:An overview [J]. Neural Networks, 2015, 61: 85-117. |
[12] | JADON S. A survey of loss functions for semanticsegmentation [EB/OL]. [2020-07-16]. https://arxiv.org/pdf/2006.14822.pdf. |
[13] | MA J. Segmentation loss odyssey [EB/OL]. [2020-07-16]. https://arxiv.org/pdf/2005.13449.pdf. |
[14] | MILLETARI F, NAVAB N, AHMADI S A. V-net:Fully convolutional neural networks for volumetricmedical image segmentation [C]//2016 Fourth InternationalConference on 3D Vision (3DV). Stanford,California, USA: IEEE, 2016: 565-571. |
[15] | DROZDZAL M, VORONTSOV E, CHARTRAND G,et al. The importance of skip connections in biomedicalimage segmentation [M]//CARNEIRO G, MATEUSD, PETER L, et al. Deep learning and data labelingfor medical applications. Cham: Springer, 2016: 179-187. |
[16] | FIDON L, LI W Q, GARCIA-PERAZA-HERRERA LC, et al. Generalised wasserstein Dice score for imbalancedmulti-class segmentation using holistic convolutionalnetworks [M]//CRIMI A, BAKAS S, KUIJFB, et al. Brainlesion: Glioma, multiple sclerosis,stroke and traumatic brain injuries. Cham, Switzerland:Springer, 2018: 64-76. |
[17] | REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalizedintersection over union: A metric and a loss forbounding box regression [C]//2019 IEEE/CVF Conferenceon Computer Vision and Pattern Recognition(CVPR). Long Beach, CA, USA: IEEE, 2019: 658-666. |
[18] | DOLZ J, DESROSIERS C, AYED I B. 3D fully convolutionalnetworks for subcortical segmentation in MRI:A large-scale study [J]. NeuroImage, 2018, 170: 456-470. |
[19] | GUIZARD N, COUP?P, FONOV V S, et al. Rotationinvariantmulti-contrast non-local means for MS lesionsegmentation [J]. NeuroImage: Clinical, 2015, 8: 376-389. |
[20] | HARMOUCHE R, SUBBANNA N K, COLLINS D L,et al. Probabilistic multiple sclerosis lesion classificationbased on modeling regional intensity variabilityand local neighborhood information [J]. IEEE Transactionson Biomedical Engineering, 2015, 62(5): 1281-1292. |
[21] | STYNER M, LEE J, CHIN B, et al. 3D segmentationin the clinic: A grand challenge II: MS lesion segmentation[J]. MIDAS Journal, 2008, 2008: 1-6. |
[22] | WONG K C L, MORADI M, TANG H, et al. 3Dsegmentation with exponential logarithmic loss forhighly unbalanced object sizes [M]//FRANGI A F,SCHNABEL J A, DAVATZIKOS C, et al. Medicalimage computing and computer assisted intervention— MICCAI 2018. Cham, Switzerland: Springer, 2018:612-619. |
[23] | LUCAS C, KEMMLING A, MAMLOUK A M, etal. Multi-scale neural network for automatic segmentationof ischemic strokes on acute perfusion images[C]//2018 IEEE 15th International Symposium onBiomedical Imaging (ISBI 2018). Washington, DC,USA: IEEE, 2018: 1118-1121. |
[24] | WANG ZW, SMITH C D, LIU J D. Ensemble of multisizedFCNs to improve white matter lesion segmentation[M]//SHI Y H, SUK H I, LIUM X. Machine learningin medical imaging. Cham, Switzerland: Springer,2018: 223-232. |
[25] | KARIMI D, SALCUDEAN S E. Reducing the hausdorffdistance in medical image segmentation with convolutionalneural networks [J]. IEEE Transactions onMedical Imaging, 2020, 39(2): 499-513. |
[26] | YANG D, ROTH H, WANG X S, et al. Enhancingforeground boundaries for medicalimage segmentation [EB/OL]. [2020-07-16].https://arxiv.org/pdf/2005.14355.pdf. |
[27] | ODA H, ROTH H R, CHIBA K, et al. BESNet:Boundary-enhanced segmentation of cells inhistopathological images [M]//FRANGI A F,SCHNABEL J A, DAVATZIKOS C, et al. Medicalimage computing and computer assisted intervention— MICCAI 2018. Cham, Switzerland: Springer, 2018:228-236. |
[28] | SUDRE C H, LIWQ, VERCAUTEREN T, et al. GeneralisedDice overlap as a deep learning loss functionfor highly unbalanced segmentations [M]//CARDOSOM J, ARBEL T, CARNEIRO G, et al. Deep Learningin medical image analysis and multimodal learningfor clinical decision support. Cham, Switzerland:Springer, 2017: 240-248. |
[29] | TAGHANAKI S A, ZHENG Y F, ZHOU S K, et al.Combo loss: Handling input and output imbalancein multi-organ segmentation [J]. Computerized MedicalImaging and Graphics, 2019, 75: 24-33. |
[30] | SALEHI S S M, ERDOGMUS D, GHOLIPOUR A.Tversky loss function for image segmentation using 3Dfully convolutional deep networks [M]//WANG Q, SHIY H, SUK H I, et al. Machine Learning in MedicalImaging. Cham, Switzerland: Springer, 2017: 379-387. |
[31] | RONNEBERGER O, FISCHER P, BROX T. U-net:Convolutional networks for biomedical image segmentation[C]//NAVAB N, HORNEGGER J, WELLS WM, et al. Medical image computing and computerassistedintervention—MICCAI 2015. Cham, Switzerland:Springer, 2015: 234-241. |
[32] | WU Z F, SHEN C H, VAN DEN HENGELA. Bridging category-level and instance-level semanticimage segmentation [EB/OL]. [2020-07-16].https://arxiv.org/pdf/1605.06885.pdf. |
[33] | LIN T Y, GOYAL P, GIRSHICK R, et al. Focalloss for dense object detection [C]//2017 IEEE InternationalConference on Computer Vision (ICCV ).Venice, Italy: IEEE, 2017: 2980-2988. |
[34] | WANG P, CHUNG A C S. Focal Dice lossand image dilation for brain tumor segmentation[M]//STOYANOV D, TAYLOR Z, CARNEIRO G, etal. Deep learning in medical image analysis and multimodallearning for clinical decision support. Cham,Switzerland: Springer, 2018: 119-127. |
[35] | ZHOU Y J, HUANG W J, DONG P, et al. D-UNet:A dimension-fusion U shape network for chronicstroke lesion segmentation [J]. IEEE/ACM Transactionson Computational Biology and Bioinformatics,2019. https://doi.org/10.1109/TCBB.2019.2939522(published online). |
[36] | ASLANI S, MURINO V, DAYAN M, et al. Scannerinvariant multiple sclerosis lesion segmentation fromMRI [C]//2020 IEEE 17th International Symposiumon Biomedical Imaging (ISBI). Lowa City, IA, USA:IEEE, 2020: 781-785. |
[37] | HASHEMIS R, SALEHI S S M, ERDOGMUS D, et al.Asymmetric loss functions and deep densely-connectednetworks for highly-imbalanced medical image segmentation:Application to multiple sclerosis lesion detection[J]. IEEE Access, 2019, 7: 1721-1735. |
[38] | XUE Y Z, FARHAT F G, BOUKRINA O, et al. Amulti-path 2.5 dimensional convolutional neural networksystem for segmenting stroke lesions in brain MRIimages [J]. NeuroImage: Clinical, 2020, 25: 102118. |
[39] | LI H L, PARIKH N A, WANG J H, et al. Objectiveand automated detection of diffuse white matter abnormalityin preterm infants using deep convolutionalneural networks [J]. Frontiers in Neuroscience, 2019,13: 610. |
[40] | GROS C, DE LEENER B, BADJI A, et al. Automaticsegmentation of the spinal cord and intramedullarymultiple sclerosis lesions with convolutional neural networks[J]. NeuroImage, 2019, 184: 901-915. |
[41] | RACHMADI M F, VALD′ES-HERN′ANDEZ M D C,AGAN M L F, et al. Segmentation of white matter hyperintensitiesusing convolutional neural networks withglobal spatial information in routine clinical brain MRIwith none or mild vascular pathology [J]. ComputerizedMedical Imaging and Graphics, 2018, 66: 28-43. |
[42] | NAIR T, PRECUP D, ARNOLD D L, et al. Exploringuncertainty measures in deep networks for multiplesclerosis lesion detection and segmentation [J]. MedicalImage Analysis, 2020, 59: 101557. |
[43] | XU B T, CHAI Y Q, GALARZA C M, et al. Orchestralfully convolutional networks for small lesionsegmentation in brain MRI [C]//2018 IEEE 15th InternationalSymposium on Biomedical Imaging (ISBI2018). Washington, DC, USA: IEEE, 2018: 889-892. |
[44] | NACEUR M B, AKIL M, SAOULI R, et al. Fully automaticbrain tumor segmentation with deep learningbasedselective attention using overlapping patches andmulti-class weighted cross-entropy [J]. Medical ImageAnalysis, 2020, 63: 101692. |
[45] | KUZINA A, EGOROV E, BURNAEV E. Bayesiangenerative models for knowledge transfer in MRI semanticsegmentation problems [J]. Frontiers in Neuroscience,2019, 13: 844. |
[46] | GHAFFARI M, SOWMYA A, OLIVER R. Automatedbrain tumor segmentation using multimodalbrain scans: A survey based on models submitted tothe BraTS 2012—2018 Challenges [J]. IEEE Reviewsin Biomedical Engineering, 2020, 13: 156-168. |
[47] | KUMAR A, UPADHYAY N, GHOSAL P, et al.CSNet: A new DeepNet framework for ischemic strokelesion segmentation [J]. Computer Methods and Programsin Biomedicine, 2020, 193: 105524. |
[48] | WANG G T, SONG T, DONG Q, et al. Automatic ischemicstroke lesion segmentation from computed tomographyperfusion images by image synthesis andattention-based deep neural networks [J]. Medical ImageAnalysis, 2020, 65: 101787. |
[49] | HU S Y, WENG W H, LU S L, et al. Multimodalvolume-aware detection and segmentation for brainmetastases radiosurgery [M]//NGUYEN D, XING L,JIANG S. Artificial Intelligence in Radiation Therapy.Cham, Switzerland: Springer, 2019: 61-69. |
[50] | MAIER O, MENZE B H, VON DER GABLENTZ J,et al. ISLES 2015: A public evaluation benchmark forischemic stroke lesion segmentation from multispectralMRI [J]. Medical Image Analysis, 2017, 35: 250-269. |
[51] | C?IC?EK ¨ O, ABDULKADIR A, LIENKAMP S S, etal. 3D U-Net: Learning dense volumetric segmentationfrom sparse annotation [M]//OURSELIN S,JOSKOWICZ L, SABUNCU M R, et al. Medical imagecomputing and computer-assisted intervention —MICCAI 2016. Cham, Switzerland: Springer, 2016:424-432. |
[52] | MYRONENKO A. 3D MRI brain tumor segmentationusing autoencoder regularization [M]//CRIMI A,BAKAS S, KUIJF H, et al. Brainlesion: Glioma, multiplesclerosis, stroke and traumatic brain injuries.Cham, Switzerland: Springer, 2018: 311-320. |
[53] | MOSTAPHA M, STYNER M. Role of deep learningin infant brain MRI analysis [J]. Magnetic ResonanceImaging, 2019, 64: 171-189. |
[54] | WARING J, LINDVALL C, UMETON R. Automatedmachine learning: Review of the state-of-the-art andopportunities for healthcare [J]. Artificial Intelligencein Medicine, 2020, 104: 101822 |
[1] | QIN Chao1 (秦 超), WANG Yafei1 (王亚飞), ZHANG Yuchao2 (张宇超), YIN Chengliang1∗ (殷承良). Birds-Eye-View Semantic Segmentation and Voxels Semantic Segmentation Based on Frustum Voxels Modeling and Monocular Camera [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 100-113. |
[2] | ZENG Guozhi, WEI Ziqing, YUE Bao, DING Yunxiao, ZHENG Chunyuan, ZHAI Xiaoqiang. Energy Consumption Prediction of Office Buildings Based on CNN-RNN Combined Model [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1256-1261. |
[3] | WU Shuchen, QI Zongfeng, LI Jianxun. Intelligent Global Sensitivity Analysis Based on Deep Learning [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 840-849. |
[4] | CHANG Qing∗ (常 青), YANG Wenyou (杨文友), CHEN Lanlan (陈兰岚). Deformable Registration Algorithm via Non-subsampled Contourlet Transform and Saliency Map [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 452-462. |
[5] | JIANG Zhiguo (蒋志国), CHANG Qing∗ (常 青). USSL Net: Focusing on Structural Similarity with Light U-Structure for Stroke Lesion Segmentation [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 485-497. |
[6] | JIA Dengqiang* (贾灯强), LUO Xinzhe (罗鑫喆), DING Wangbin (丁王斌),HUANG Liqin (黄立勤), ZHUANG Xiahai (庄吓海). SeRN: A Two-Stage Framework of Registration for Semi-Supervised Learning for Medical Images [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 176-189. |
[7] | TANG Zeyu, ZOU Xiaohu, LI Pengfei, ZHANG Wei, YU Jiaqi, ZHAO Yaodong. A Few-Shots OFDM Target Augmented Identification Method Based on Transfer Learning [J]. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1666-1674. |
[8] | LÜ Chaofan, YAN Yingjie, LIN Li, CHAI Gang, BAO Jinsong. Design of Mandibular Angle Osteotomy Plane Based on Point Cloud Semantic Segmentation Algorithm [J]. Journal of Shanghai Jiao Tong University, 2022, 56(11): 1509-1517. |
[9] | WANG Zhiming(王志明), DONG Jingjing (董静静), ZHANG Junpeng∗ (张军鹏). Multi-Model Ensemble Deep Learning Method to Diagnose COVID-19 Using Chest Computed Tomography Images [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 70-80. |
[10] | ZHANG Yue (张月), LIU Shijie (刘世界), LI Chunlai (李春来), WANG Jianyu (王建宇). Application of Deep Learning Method on Ischemic Stroke Lesion Segmentation [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 99-111. |
[11] | TAO Haihong, YAN Yingfei. A Netted Radar Node Selection Algorithm Based on GA-CNN [J]. Air & Space Defense, 2022, 5(1): 1-5. |
[12] | JIN Lijie, WU Yatao. Radar Signal Modulation Type Recognition Based on Double CNN [J]. Air & Space Defense, 2022, 5(1): 66-70. |
[13] | WANG Xingzhi, ZHAI Haibao, YAN Yaqin, WU Qingxi. Pre-Dispatching Method of New Generation Dispatching and Control System Based on Digital Twin and Deep Learning [J]. Journal of Shanghai Jiao Tong University, 2021, 55(S2): 37-41. |
[14] | WANG Yan, CHEN Yaoran, HAN Zhaolong, ZHOU Dai, BAO Yan. Short-Term Wind Speed Forecasting Model Based on Mutual Information and Recursive Neural Network [J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1080-1086. |
[15] | ZOU Yue (邹 悦), LI Lin (李 霖), YANG Xubo (杨旭波). Lightweight Method for Vehicle Re-identification Using Reranking Algorithm Based on Topology Information of Surveillance Network [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 577-586. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||