Journal of Shanghai Jiao Tong University (Science) ›› 2019, Vol. 24 ›› Issue (5): 551-558.doi: 10.1007/s12204-019-2113-3
Previous Articles Next Articles
REN Xuanguang (任炫光), PAN Han (潘汉), JING Zhongliang (敬忠良), GAO Lei (高磊)
Online:
2019-10-08
Published:
2019-09-27
Contact:
PAN Han (潘汉), JING Zhongliang (敬忠良)
E-mail:hanpan@sjtu.edu.cn, zljing@sjtu.edu.cn
CLC Number:
REN Xuanguang (任炫光), PAN Han (潘汉), JING Zhongliang (敬忠良), GAO Lei (高磊). Multi-Image Restoration Method Combined with Total Generalized Variation and lp-Norm Regularizations[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(5): 551-558.
[6] | CETIN M, KARL W C. Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization [J]. IEEE Transactions on Image Processing,2001, 10(4): 623-631. |
[1] | CAI J F, CHAN R H, NIKOLOVA M. Two-phase approach for deblurring images corrupted by impulse plus Gaussian noise [J]. Inverse Problems and Imaging,2008, 2(2): 187-204. |
[7] | CHARTRAND R. Exact reconstruction of sparse signals via nonconvex minimization [J]. IEEE Signal Processing Letters, 2007, 14(10): 707-710. |
[2] | BI S, HAN X G, YU Y Z. An L1 image transform for edge-preserving smoothing and scene-level intrinsic decomposition[J]. ACM Transactions on Graphics, 2015,34(4): 78. |
[3] | REN X G, PAN H, JING Z L, et al. Multi-images restoration method with a mixed-regularization approach for cognitive informatics [C]//International Conference on Cognitive Informatics & Cognitive Computing. Berkeley, CA: IEEE, 2018: 423-430. |
[8] | BREDIES K, KUNISCH K, POCK T. Total generalized variation [J]. SIAM Journal on Imaging Sciences,2013, 3(3): 492-526. |
[4] | DONOHO D L, JOHNSTONE I M. Adapting to unknown smoothness via wavelet shrinkage [J]. Journal of the American Statistical Association, 1995, 90(432):1200-1224. |
[9] | SHU Q L, WU C S, ZHONG Q X, et al. Total generalized variation-regularized variational model for single image dehazing [C]//Ninth International Conference on Graphic and Image Processing. Qingdao, China:SPIE, 2017: 106152M. |
[10] | KRISHNAN D, FERGUS R. Fast image deconvolution using hyper-Laplacian priors [C]//23rd Annual Conference on Neural Information Processing Systems.Vancouver, Canada: DBLP, 2009: 1033-1041. |
[5] | YUE L W, SHEN H F, YUAN Q Q, et al. A locally adaptive L1-L2 norm for multi-frame super-resolution of images with mixed noise and outliers [J]. Signal Processing,2014, 105: 156-174. |
[6] | CETIN M, KARL W C. Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization [J]. IEEE Transactions on Image Processing,2001, 10(4): 623-631. |
[11] | ZUO W M, MENG D Y, ZHANG L, et al. A generalized iterated shrinkage algorithm for non-convex sparse coding [C]//IEEE International Conference on Computer Vision. Sydney, Australia: IEEE, 2013: 217-224. |
[7] | CHARTRAND R. Exact reconstruction of sparse signals via nonconvex minimization [J]. IEEE Signal Processing Letters, 2007, 14(10): 707-710. |
[12] | ROERDINK J B T M. FFT-based methods for nonlinear image restoration in confocal microscopy [J]. Journal of Mathematical Imaging and Vision, 1994, 4(2):199-207. |
[8] | BREDIES K, KUNISCH K, POCK T. Total generalized variation [J]. SIAM Journal on Imaging Sciences,2013, 3(3): 492-526. |
[13] | BERTERO M, BOCCACCI P. Introduction to inverse problems in imaging [M]. London, UK: IOP Publishing Ltd, 1998. |
[9] | SHU Q L, WU C S, ZHONG Q X, et al. Total generalized variation-regularized variational model for single image dehazing [C]//Ninth International Conference on Graphic and Image Processing. Qingdao, China:SPIE, 2017: 106152M. |
[14] | BECK A, TEBOULLE M. A fast iterative shrinkagethresholding algorithm for linear inverse problems [J].SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202. |
[10] | KRISHNAN D, FERGUS R. Fast image deconvolution using hyper-Laplacian priors [C]//23rd Annual Conference on Neural Information Processing Systems.Vancouver, Canada: DBLP, 2009: 1033-1041. |
[15] | ZUO W M, LIN Z C. A generalized accelerated proximal gradient approach for total-variation-based image restoration [J]. IEEE Transactions on Image Processing,2011, 20(10): 2748-2759. |
[11] | ZUO W M, MENG D Y, ZHANG L, et al. A generalized iterated shrinkage algorithm for non-convex sparse coding [C]//IEEE International Conference on Computer Vision. Sydney, Australia: IEEE, 2013: 217-224. |
[16] | WRIGHT S J, NOWAK R D, FIGUEIREDO M A T.Sparse reconstruction by separable approximation [J].IEEE Transactions on Signal Processing, 2009, 57(7):2479-2493. |
[12] | ROERDINK J B T M. FFT-based methods for nonlinear image restoration in confocal microscopy [J]. Journal of Mathematical Imaging and Vision, 1994, 4(2):199-207. |
[17] | TIERNEY S, GUO Y, GAO J B. Selective multi-source total variation image restoration [C]//International Conference on Digital Image Computing: Techniques & Applications. Adelaide, Australia: IEEE, 2015: 677-684. |
[13] | BERTERO M, BOCCACCI P. Introduction to inverse problems in imaging [M]. London, UK: IOP Publishing Ltd, 1998. |
[18] | SETZER S, STEIDL G, TEUBER T. Infimal convolution regularizations with discrete l1-type functionals[J]. Communications in Mathematical Sciences, 2011,9(3): 797-827. |
[19] | ONO S, YAMADA I. Optimized JPEG image decompression with super-resolution interpolation using multi-order total variation [C]//IEEE International Conference on Image Processing. Melbourne, Australia:IEEE, 2013: 474-478. |
[14] | BECK A, TEBOULLE M. A fast iterative shrinkagethresholding algorithm for linear inverse problems [J].SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202. |
[15] | ZUO W M, LIN Z C. A generalized accelerated proximal gradient approach for total-variation-based image restoration [J]. IEEE Transactions on Image Processing,2011, 20(10): 2748-2759. |
[20] | SHIRAI K, OKUDA M. FFT based solution for multivariable L2 equations using KKT system via FFT and efficient pixel-wise inverse calculation [C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Florence, Italy: IEEE, 2014: 2629-2633. |
[21] | BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers [J]. Foundations and Trends in Machine Learning, 2010, 3(1): 1-122. |
[16] | WRIGHT S J, NOWAK R D, FIGUEIREDO M A T.Sparse reconstruction by separable approximation [J].IEEE Transactions on Signal Processing, 2009, 57(7):2479-2493. |
[22] | SIM?OES M, BIOUCAS-DIAS J, ALMEIDA L B, et al. A convex formulation for hyperspectral image superresolution via subspace-based regularization [J].IEEE Transactions on Geoscience and Remote Sensing,2015, 53(6): 3373-3388. |
[17] | TIERNEY S, GUO Y, GAO J B. Selective multi-source total variation image restoration [C]//International Conference on Digital Image Computing: Techniques & Applications. Adelaide, Australia: IEEE, 2015: 677-684. |
[23] | LIU H Y, ZHANG Z R, XIAO L, et al. Poisson noise removal based on nonlocal total variation with Euler's elastica pre-processing [J]. Journal of Shanghai Jiao Tong University (Science), 2017, 22(5): 609-614. |
[18] | SETZER S, STEIDL G, TEUBER T. Infimal convolution regularizations with discrete l1-type functionals[J]. Communications in Mathematical Sciences, 2011,9(3): 797-827. |
[24] | LIN T Y, MA S Q, ZHANG S Z. Iteration complexity analysis of multi-block ADMM for a family of convex minimization without strong convexity [J]. Journal of Scientific Computing, 2016, 69(1): 52-81. |
[25] | HONG M Y, LUO Z Q, RAZAVIYAYN M. Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems [C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Brisbane, Australia: IEEE, 2015: 3836-3840. |
[19] | ONO S, YAMADA I. Optimized JPEG image decompression with super-resolution interpolation using multi-order total variation [C]//IEEE International Conference on Image Processing. Melbourne, Australia:IEEE, 2013: 474-478. |
[20] | SHIRAI K, OKUDA M. FFT based solution for multivariable L2 equations using KKT system via FFT and efficient pixel-wise inverse calculation [C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Florence, Italy: IEEE, 2014: 2629-2633. |
[21] | BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers [J]. Foundations and Trends in Machine Learning, 2010, 3(1): 1-122. |
[22] | SIM?OES M, BIOUCAS-DIAS J, ALMEIDA L B, et al. A convex formulation for hyperspectral image superresolution via subspace-based regularization [J].IEEE Transactions on Geoscience and Remote Sensing,2015, 53(6): 3373-3388. |
[23] | LIU H Y, ZHANG Z R, XIAO L, et al. Poisson noise removal based on nonlocal total variation with Euler's elastica pre-processing [J]. Journal of Shanghai Jiao Tong University (Science), 2017, 22(5): 609-614. |
[24] | LIN T Y, MA S Q, ZHANG S Z. Iteration complexity analysis of multi-block ADMM for a family of convex minimization without strong convexity [J]. Journal of Scientific Computing, 2016, 69(1): 52-81. |
[25] | HONG M Y, LUO Z Q, RAZAVIYAYN M. Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems [C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Brisbane, Australia: IEEE, 2015: 3836-3840. |
[1] | HUANG Yuhao, HAN Chao, ZHAO Minghui, DU Qiankun, WANG Shigang. Multi-Objective Optimization Strategy of Trajectory Planning for Unmanned Aerial Vehicles Considering Constraints of Safe Flight Corridors [J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 1024-1033. |
[2] | LI Zhen, XU Bingqing, LI Qingbo, YAN Xiongwei, LI Boya. Gliding Vehicle Trajectory Planning Based on Sequential Convex Optimization Algorithm [J]. Air & Space Defense, 2021, 4(4): 50-56. |
[3] | MA Jin (马进), XUE Teng (薛腾), SHAO Quanquan (邵全全), HU Jie (胡洁), WANG Weiming (王伟明) . Research on Spatially Adaptive High-Order Total Variation Model for Weak Fluorescence Image Restoration [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 1-7. |
[4] | ZHAN Shitao1,YAN Weixin1,FU Zhuang1,2,PAN Gen1,YU Jinjiang3,ZHAO Yanzheng1. Feedback Stabilization of a Two-axis Gimbal System via Convex Optimization [J]. Journal of Shanghai Jiaotong University, 2013, 47(08): 1312-1318. |
[5] | TAN Chong-1, ZOU Jun-Ni-1, WANG Min-1, XIONG Hong-Kai-2. Joint Optimization of Rate Allocation and Network Cost in Distributed Wireless Sensor Networks [J]. Journal of Shanghai Jiaotong University, 2011, 45(07): 1021-1030. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||