Journal of shanghai Jiaotong University (Science) ›› 2014, Vol. 19 ›› Issue (6): 651-662.doi: 10.1007/s12204-014-1562-y
Previous Articles Next Articles
SHAO Jia-xiang1,2,3 (邵家骧), ZHANG Ting-ting2,3 (张婷婷), LIU Teng-yuan2,3 (刘腾远), QUAN Yi-zhou1,2,3 (全亦周), LI Fan2,3 (李凡), LIU Jie1,2,3 (刘杰),YANG Xiao2,3 (杨霄), XIE Qian2,3 (谢谦), XIA Wei-liang1,2,3* (夏伟梁)
Online:
2014-12-31
Published:
2014-12-08
Contact:
XIA Wei-liang (夏伟梁)
E-mail:wlxia@sjtu.edu.cn
CLC Number:
SHAO Jia-xiang1,2,3 (邵家骧), ZHANG Ting-ting2,3 (张婷婷), LIU Teng-yuan2,3 (刘腾远), QUAN Yi-zhou1,2,3 (全亦周), LI Fan2,3 (李凡), LIU Jie1,2,3 (刘杰),YANG Xiao2,3 (杨霄), XIE Qian2,3 (谢谦), XIA Wei-liang1,2,3* (夏伟梁). Sirtuin Functions in the Brain: From Physiological to Pathological Aspects[J]. Journal of shanghai Jiaotong University (Science), 2014, 19(6): 651-662.
[1] Haigis M C, Sinclair D A. Mammalian sirtuins:Biological insights and disease relevance [J]. Annual Review of Pathology: Mechanisms of Disease, 2010,5(1): 253-295.[2] Rine J, Herskowitz I. Four genes responsible for a position effect on expression from HML and HMR in saccharomyces cerevisiae [J]. Genetics, 1987, 116(1):9-22.[3] Michishita E, Park J Y, Burneskis J M, et al.Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins [J]. Molecular Biology of the Cell, 2005, 16(10): 4623-4635.[4] Vaziri H, Dessain S K, ng Eaton E, et al.HSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase [J]. Cell, 2001, 107(2): 149-159.[5] Hisahara S, Chiba S, Matsumoto H, et al. Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(40): 15599-15604.[6] Sugino T, Maruyama M, Tanno M, et al. Protein deacetylase SIRT1 in the cytoplasm promotes nerve growth factor-induced neurite outgrowth in PC12 cells [J]. FEBS Letters, 2010, 584(13): 2821-2826.[7] North B J, Marshall B L, Borra M T, et al. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase [J]. Molecular Cell, 2003, 11(2):437-444.[8] North B J, Verdin E. Interphase nucleocytoplasmic shuttling and localization of SIRT2 during mitosis [J]. PLoS One, 2007, 2(8): e784.[9] Verdin E, Hirschey M D, Finley LWS, et al. Sirtuin regulation of mitochondria: Energy production,apoptosis, and signaling [J]. Trends in Biochemical Sciences, 2010, 35(12): 669-675.[10] Michishita E, Mccord R A, Berber E, et al.SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin [J]. Nature, 2008,452(7186): 492-496.[11] Ford E, Voit R, Liszt G, et al. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription [J]. Genes & Development, 2006, 20(9):1075-1080.[12] Onyango P, Celic I, Mccaffery J M, et al.SIRT3, a human SIR2 homologue, is an NADdependent deacetylase localized to mitochondria [J].Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(21): 13653-13658.[13] Barber M F, Michishita-Kioi E, Xi Y, et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation [J]. Nature, 2012,487(7405): 114-118.[14] Haigis M C, Mostoslavsky R, Haigis K M, etal. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells [J]. Cell, 2006, 126(5): 941-954.[15] Nakagawa T, Lomb D J, Haigis M C, et al. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle [J]. Cell, 2009, 137(3): 560-570.[16] Du J, Zhou Y, Su X, et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase [J].Science, 2011, 334(6057): 806-809.[17] Liszt G, Ford E, Kurtev M, et al. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase [J]. Journal of Biological Chemistry, 2005, 280(22):21313-21320.[18] Jiang H, Khan S, Wang Y, et al. SIRT6 regulates TNF-α secretion through hydrolysis of longchain fatty acyl lysine [J]. Nature, 2013, 496(7443):110-113.[19] Feldman J L, Baeza J, Denu J M. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins[J]. The Journal of Biological Chemistry, 2013,288(43): 31350-31356.[20] Guarente L. Calorie restriction and sirtuins revisited [J]. Genes & Development, 2013, 27(19): 2072-2085.[21] Kaeberlein M, Mcvey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in saccharomyces cerevisiae by two different mechanisms[J]. Genes & Development, 1999, 13(19): 2570-2580.[22] Chen D, Guarente L. SIR2: A potential target for calorie restriction mimetics [J]. Trends in Molecular Medicine, 2007, 13(2): 64-71.[23] Kanfi Y, Naiman S, Amir G, et al. The sirtuinSIRT6 regulates lifespan in male mice [J]. Nature,2012, 483(7388): 218-221.[24] Satoh A, Brace C S, Rensing N, et al. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH[J]. Cell Metabolism, 2013, 18(3): 416-430.[25] Hall J A, Dominy J E, Lee Y, et al. The sirtuin family’s role in aging and age-associated pathologies[J]. Journal of Clinical Investigation, 2013, 123(3):973-979.[26] Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells [J].Annual Review Neuroscience, 2009, 32(1): 149-184.[27] Prozorovski T, Schulze-Topphoff U, Glumm R, et al. Sirt1 contributes critically to the redoxdependent fate of neural progenitors [J]. Nature Cell Biology, 2008, 10(4): 385-394.[28] Tiberi L, van den Ameele J, Dimidschstein J,et al. BCL6 controls neurogenesis through Sirt1-dependent epigenetic repression of selective Notch targets [J]. Nature Neuroscience, 2012, 15(12): 1627-1635.[29] Ross S E, Greenberg M E, Stiles C D. Basic helix-loop-helix factors in cortical development [J].Neuron, 2003, 39(1): 13-25.[30] Kageyama R, Ohtsuka T, Kobayashi T. The Hes gene family: Repressors and oscillators that orchestrate embryogenesis [J]. Development, 2007, 134(7):1243-1251.[31] Ichi S, Boshnjaku V, Shen Y W, et al. Role of Pax3 acetylation in the regulation of Hes1 and Neurog2 [J]. Molecular Biology of the Cell, 2011, 22(4):503-512.[32] Holloway K R, Calhoun T N, Saxena M, et al.SIRT1 regulates dishevelled proteins and promotes transient and constitutive Wnt signaling [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(20): 9216-9221.[33] Liu B, Ghosh S, Yang X, et al. Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria [J]. Cell Metabolism, 2012, 16(6): 738-750.[34] Zhang Y, Wang J, Chen G, et al. Inhibition of Sirt1 promotes neural progenitors toward motoneuron differentiation from human embryonic stem cells [J]. Biochemical and Biophysical Research Communications,2011, 404(2): 610-614.[35] Rafalski V A, Ho P P, Brett J O, et al. Expansion of oligodendrocyte progenitor cells following SIRT1 inactivation in the adult brain [J]. Nature Cell Biology, 2013, 15(6): 614-624.[36] Maxwell M M, Tomkinson E M, Nobles J, et al.The sirtuin 2 microtubule deacetylase is an abundant neuronal protein that accumulates in the aging CNS [J]. Human Molecular Genetics, 2011, 20(20): 3986-3996.[37] Werner H B, Kuhlmann K, Shen S, et al. Proteolipid protein is required for transport of sirtuin 2 into CNS myelin [J]. Journal of Neuroscience, 2007,27(20): 7717-7730.[38] Li W, Zhang B, Tang J, et al. Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through deacetylating α-tubulin [J]. The Journal of Neuroscience,2007, 27(10): 2606-2616.[39] Ji S, Doucette J R, Nazarali A J. Sirt2 is a novel in vivo downstream target of Nkx2. 2 and enhances oligodendroglial cell differentiation [J]. Journal of Molecular Cell Biology, 2011, 3(6): 351-359.[40] Si X, Chen W, Guo X, et al. Activation of GSK3beta by Sirt2 is required for early lineage commitment of mouse embryonic stem cell [J]. PLoS One,2013, 8(10): e76699.[41] Beirowski B, Gustin J, Armour S M, et al. Sirtwo-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(43): E952-961.[42] Komlos D, Mann K D, Zhuo Y, et al. Glutamate dehydrogenase 1 and SIRT4 regulate glial development [J]. Glia, 2013, 61(3): 394-408.[43] Guo W, Qian L, Zhang J, et al. Sirt1 overexpression in neurons promotes neurite outgrowth and cell survival through inhibition of the mTOR signaling[J]. Journal of Neuroscience Research, 2011, 89(11):1723-1736.[44] Li X H, Chen C, Tu Y, et al. Sirt1 promotes axonogenesis by deacetylation of Akt and inactivation of GSK3 [J]. Molecular Neurobiology, 2013, 48(3): 490-499.[45] Liu C M, Wang R Y, Saijilafu, et al. MicroRNA-138 and SIRT1 form a mutual negative feedback loop to regulate mammalian axon regeneration [J]. Genes & Development, 2013, 27(13): 1473-1483.[46] Michan S, Li Y, Chou M M H, et al. SIRT1 is essential for normal cognitive function and synaptic plasticity [J]. The Journal of Neuroscience, 2010, 30(29):9695-9707.[47] Codocedo J F, Allard C, Godoy J A, et al.SIRT1 regulates dendritic development in hippocampal neurons [J]. PLoS One, 2012, 7(10): e47073.[48] Coppari R. Metabolic actions of hypothalamic SIRT1 [J]. Trends in Endocrinology and Metabolism,2012, 23(4): 179-185.[49] Ramadori G, Lee C E, Bookout A L, et al. Brain SIRT1: Anatomical distribution and regulation by energy availability [J]. The Journal of Neuroscience,2008, 28(40): 9989-9996.[50] Ramadori G, Fujikawa T, Fukuda M, et al. SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity [J]. Cell Metabolism, 2010, 12(1): 78-87.[51] Ramadori G, Fujikawa T, Erson J, et al.SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance [J]. Cell Metabolism, 2011,14(3): 301-312.[52] Hong S H, Lee K S, Kwak S J, et al. Minibrain/dyrk1a regulates food intake through the Sir2-FOXO-sNPF/NPY pathway in drosophila and mammals[J]. PLoS Genetics, 2012, 8(8): e1002857.[53] Cakir I, Perello M, Lansari O, et al. Hypothalamic Sirt1 regulates food intake in a rodent model system [J]. PLoS One, 2009, 4(12): e8322.[54] Vel′aquez D A, Martinez G, Romero A, et al.The central Sirtuin 1/p53 pathway is essential for the orexigenic action of ghrelin [J]. Diabetes, 2011, 60(4):1177-1185.[55] Dietrich M O, Antunes C, Geliang G, et al.Agrp neurons mediate Sirt1’s action on the melanocortin system and energy balance: Roles for Sirt1 in neuronal firing and synaptic plasticity [J]. The Journal of Neuroscience, 2010, 30(35): 11815-11825.[56] Asher G, Gatfield D, Stratmann M, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation [J]. Cell, 2008, 134(2): 317-328.[57] Nakahata Y, Kaluzova M, Grimaldi B, et al.The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control [J]. Cell, 2008, 134(2): 329-340.[58] Chang H C, Guarente L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging [J]. Cell, 2013, 153(7): 1448-1460.[59] Panossian L, Fenik P, Zhu Y, et al. SIRT1 regulation of wakefulness and senescence-like phenotype in wake neurons [J]. The Journal of Neuroscience, 2011,31(11): 4025-4036.[60] Peek C B, Affinati A H, Ramsey KM, et al. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice [J]. Science, 2013, 342(6158):1243417.[61] Monteserin-Garcia J, Al-Massadi O, Seoane L M, et al. Sirt1 inhibits the transcription factor CREB to regulate pituitary growth hormone synthesis [J].FASEB Journal, 2013, 27(4): 1561-1571.[62] Schwer B, Schumacher B, Lombard D B, et al.Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(50): 21790-21794.[63] Ferguson D, Koo J W, Feng J, et al. Essential role of SIRT1 signaling in the nucleus accumbens in cocaine and morphine action [J]. The Journal of Neuroscience,2013, 33(41): 16088-16098.[64] Libert S, Pointer K, Bell E L, et al. SIRT1 activates MAO-A in the brain to mediate anxiety and exploratory drive [J]. Cell, 2011, 147(7): 1459-1472.[65] Gao J, Wang W Y, Mao Y W, et al. A novel pathway regulates memory and plasticity via SIRT1 and miR-134 [J]. Nature, 2010, 466(7310): 1105-1109.[66] Zhao Y N, Li W F, Li F, et al. Resveratrol improves learning and memory in normally aged mice through microRNA-CREB pathway [J]. Biochemical and Biophysical Research Communications, 2013,435(4): 597-602.[67] Qiu X, Brown K, Hirschey M D, et al. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation [J]. Cell Metabolism, 2010, 12(6):662-667.[68] Lin Z F, Xu H B, Wang J Y, et al. SIRT5 desuccinylates and activates SOD1 to eliminate ROS [J].Biochemical and Biophysical Research Communications,2013, 441(1): 191-195.[69] Hsu C P, Zhai P, Yamamoto T, et al. Silent information regulator 1 protects the heart from ischemia/reperfusion [J]. Circulation, 2010, 122(21):2170-2182.[70] Nadtochiy S M, Yao H, Mcburney M W, et al.SIRT1-mediated acute cardioprotection [J]. American Journal of Physiology-Heart and Circulatory Physiology,2011, 301(4): H1506-H1512.[71] Sundaresan N R, Gupta M, Kim G, et al. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice [J]. The Journal of Clinical Investigation,2009, 119(9): 2758-2771.[72] Sundaresan N R, Vasudevan P, Zhong L, et al.The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun [J]. Nature Medicine, 2012, 18(11): 1643-1650.[73] Vakhrusheva O, Smolka C, Gajawada P, et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice [J]. Circulation Research, 2008,102(6): 703-710.[74] Narayan N, Lee I H, Borenstein R, et al. The NAD-dependent deacetylase SIRT2 is required for programmed necrosis [J]. Nature, 2012, 492(7428):199-204.[75] Newton K, Hildebrand J M, Shen Z, et al. Is SIRT2 required for necroptosis? [J]. Nature, 2014,506(7489): E4-E6.[76] Narayan N, Lee I H, Borenstein R, et al. Retraction:The NAD-dependent deacetylase SIRT2 is required for programmed necrosis [J]. Nature, 2014,506(7489): 516.[77] Morris K C, Lin H W, Thompson J W, et al.Pathways for ischemic cytoprotection: Role of sirtuins in caloric restriction, resveratrol, and ischemic preconditioning [J]. Journal of Cerebral Blood Flow & Metabolism, 2011, 31(4): 1003-1019.[78] Della-Morte D, Dave K R, Defazio R A, et al. Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway [J]. Neuroscience, 2009, 159(3):993-1002.[79] Clark D, Tuor U I, Thompson R, et al. Protection against recurrent stroke with resveratrol:Endothelial protection [J]. PLoS One, 2012, 7(10): e47792.[80] Wang L, Zhang L, Chen Z B, et al. Icariin enhances neuronal survival after oxygen and glucose deprivation by increasing SIRT1 [J]. European Journal of Pharmacology, 2009, 609(1-3): 40-44.[81] Zhu H R,Wang Z Y, Zhu X L, et al. Icariin protects against brain injury by enhancing SIRT1-dependent PGC-1α expression in experimental stroke [J]. Neuropharmacology,2010, 59(1-2): 70-76.[82] Raval A P, Dave K R, P′eez-Pinz′on M A. Resveratrol mimics ischemic preconditioning in the brain [J].Journal of Cerebral Blood Flow & Metabolism, 2006,26(9): 1141-1147.[83] Yan W, Fang Z, Yang Q, et al. SirT1 mediates hyperbaric oxygen preconditioning-induced ischemic tolerance in rat brain [J]. Journal of Cerebral Blood Flow & Metabolism, 2013, 33(3): 396-406.[84] Wang P, Xu T Y, Guan Y F, et al. Nicotinamide phosphoribosyltransferase protects against ischemic stroke through SIRT1-dependent adenosine monophosphate-activated kinase pathway [J]. Annals of Neurology, 2011, 69(2): 360-374.[85] Wang P, Guan Y F, Du H, et al. Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia [J]. Autophagy, 2012, 8(1): 77-87.[86] Hern′andez-Jim′enez M, Hurtado O, Cuartero M I, et al. Silent information regulator 1 protects the brain against cerebral ischemic damage [J]. Stroke,2013, 44(8): 2333-2337.[87] Lee O H, Kim J, Kim J M, et al. Decreased expression of sirtuin 6 is associated with release of high mobility group box-1 after cerebral ischemia [J]. Biochemical and Biophysical Research Communications,2013, 438(2): 388-394.[88] Qin W, Yang T, Ho L, et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction [J]. The Journal of Biological Chemistry, 2006, 281(31): 21745-21754.[89] Kim D, Nguyen M D, Dobbin M M, et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis [J]. The EMBO Journal, 2007, 26(13):3169-3179.[90] Green K N, Steffan J S, Martinez-Coria H,et al. Nicotinamide restores cognition in Alzheimer’s disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau [J]. The Journal of Neuroscience, 2008,28(45): 11500-11510.[91] Donmez G, Wang D, Cohen D E, et al. SIRT1 suppresses beta-amyloid production by activating the α-secretase gene ADAM10 [J]. Cell, 2010, 142(2): 320-332.[92] Wang R, Li J J, Diao S, et al. Metabolic stress modulates Alzheimer’s β-secretase gene transcription via SIRT1-PPARγ-PGC-1 in neurons [J]. Cell Metabolism, 2013, 17(5): 685-694.[93] Chen J, Zhou Y, Mueller-Steiner S, et al. SIRT1 protects against microglia-dependent amyloid-β toxicity through inhibiting NF-κB signaling [J]. The Journal of Biological Chemistry, 2005, 280(48): 40364-40374.[94] Min S W, Cho S H, Zhou Y, et al. Acetylation of tau inhibits its degradation and contributes to tauopathy [J]. Neuron, 2010, 67(6): 953-966.[95] Kumar R, Chaterjee P, Sharma P K, et al. Sirtuin1: A promising serum protein marker for early detection of Alzheimer’s disease [J]. PLoS One, 2013,8(4): e61560.[96] Porcelli S, Salfi R, Politis A, et al. Association between sirtuin2 gene rs10410544 polymorphism and depression in Alzheimer’s disease in two independent European samples [J]. Journal of Neural Transmission,2013, 120(12): 1709-1715.[97] WeiW, Xu X, Li H, et al. The SIRT2 polymorphism rs10410544 and risk of Alzheimer’s disease: A metaanalysis [J]. Neuromolecular Medicine, 2014. DOI 10.1007/s12017-014-8291-0 (published online).[98] Xia M, Yu J T,MiaoD, et al. SIRT2 polymorphism rs10410544 is associated with Alzheimer’s disease in a Han Chinese population [J]. Journal of Neurological Sciences, 2014, 336(1-2): 48-51.[99] Polito L, Kehoe P G, Davin A, et al. The SIRT2 polymorphism rs10410544 and risk of Alzheimer’s disease in two Caucasian case-control cohorts [J].Alzheimers & Dementia, 2013, 9(4): 392-399.[100] Rothgiesser K M, Erener S, Waibel S, et al. SIRT2 regulates NF-κB-dependent gene expression through deacetylation of p65 Lys310 [J]. Journal of Cell Science, 2010, 123(24): 4251-4258.[101] Pais T F, Szego E M, Marques O, et al. The NADdependent deacetylase sirtuin 2 is a suppressor of microglial activation and brain inflammation [J]. The EMBO Journal, 2013, 32(19): 2603-2616.[102] Weir H J M, Murray T K, Kehoe P G, et al.CNS SIRT3 expression is altered by reactive oxygen species and in Alzheimer’s disease [J]. PLoS One,2012, 7(11): e48225.[103] Albani D, Polito L, Batelli S, et al. The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by α-synuclein or amyloid-β (1-42) peptide [J]. Journal of Neurochemistry, 2009, 110(5): 1445-1456.[104] Wu Y, Li X, Zhu J X, et al. Resveratrolactivated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease [J]. Neurosignals, 2011,19(3): 163-174.[105] Blanchet J, Longpre F, Bureau G, et al. Resveratrol,a red wine polyphenol, protects dopaminergic neurons in MPTP-treated mice [J]. Progress in Neuro-Psychopharmacology & Biological Psychiatry,2008, 32(5): 1243-1250.[106] Donmez G, Arun A, Chung C Y, et al. SIRT1 protects against α-synuclein aggregation by activating molecular chaperones [J]. The Journal of Neuroscience,2012, 32(1): 124-132.[107] Outeiro T F, Kontopoulos E, Altmann S M, et al. Sirtuin 2 inhibitors rescue α-synuclein-mediated toxicity in models of Parkinson’s disease [J]. Science,2007, 317(5837): 516-519.[108] Sampaio-Marques B, Felgueiras C, Silva A, et al. SNCA (α-synuclein)-induced toxicity in yeast cells is dependent on sirtuin 2 (Sir2)-mediated mitophagy[J]. Autophagy, 2012, 8(10): 1494-1509.[109] Liu L, Arun A, Ellis L, et al. Sirtuin 2 (SIRT2) enhances 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced nigrostriatal damage via deacetylating forkhead box O3a (Foxo3a) and activating Bim protein [J]. The Journal of Biological Chemistry, 2012, 287(39): 32307-32311.[110] Liu L, Arun A, Ellis L, et al. Additons and corrections:Sirtuin 2 (SIRT2) enhances 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced nigrostriatal damage via deacetylating forkhead box O3a (Foxo3a) and activating Bim protein [J]. The Journal of Biological Chemistry, 2013, 288(33): 24163.[111] Glorioso C, Oh S, Douillard G G, et al. Brain molecular aging, promotion of neurological disease and modulation by Sirtuin5 longevity gene polymorphism [J]. Neurobiology of Disease, 2011, 41(2): 279-290.[112] Pallos J, Bodai L, Lukacsovich T, et al. Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a drosophila model of Huntington’s disease [J]. Human Molecular Genetics, 2008, 17(33): 3767-3775.[113] Parker J A, Arango M, Abderrahmane S, et al.Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons [J]. Nature Genetics, 2005, 37(4): 349-350.[114] Jiang M, Wang J, Fu J, et al. Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets [J].Nature Medicine, 2012, 18(1): 153-158.[115] Jeong H, Cohen D E, Cui L, et al. Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway [J]. Nature Medicine, 2012, 18(1): 159-165.[116] Luthi-Carter R, Taylor D M, Pallos J, et al. SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(17): 7927-7932.[117] Chopra V, Quinti L, Kim J, et al. The sirtuin 2 inhibitor AK-7 is neuroprotective in Huntington’s disease mouse models [J]. Cell Reports, 2012, 2(6): 1492-1497.[118] Bobrowska A, Donmez G, Weiss A, et al. SIRT2 ablation has no effect on tubulin acetylation in brain,cholesterol biosynthesis or the progression of Huntington’s disease phenotypes in vivo [J]. PLoS One,2012, 7(4): e34805.[119] Fu J, Jin J, Cichewicz R H, et al. Trans-(-)-epsilonviniferin increases mitochondrial sirtuin3 (SIRT3),activates AMP-activated protein kinase (AMPK),and protects cells in models of Huntington disease [J].The Journal of Biological Chemistry, 2012, 287(29):24460-24472.[120] Dobbin M M, Madabhushi R, Pan L, et al. SIRT1 collaborates with ATM and HDAC1 to maintain genomic stability in neurons [J]. Nature Neuroscience,2013, 16(8): 1008-1015.[121] Li Y, Xu W, Mcburney M W, et al. SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons [J]. Cell Metabolism, 2008, 8(1):38-48.[122] Kim S H, Lu H F, Alano C C. Neuronal Sirt3 protects against excitotoxic injury in mouse cortical neuron culture [J]. PLoS One, 2011, 6(3): e14731.[123] Someya S, Yu W, Hallows W C, et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction [J].Cell, 2010, 143(5): 802-812.[124] Wang J, Zhang Y, Tang L, et al. Protective effects of resveratrol through the up-regulation of SIRT1 expression in the mutant hSOD1-G93A-bearing motor neuron-like cell culture model of amyotrophic lateral sclerosis [J]. Neuroscience Letters, 2011, 503(3): 250-255.[125] Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration [J]. Science, 2004, 305(5686):1010-1013.[126] Suzuki K, Koike T. Mammalian Sir2-related protein (SIRT) 2-mediated modulation of resistance to axonal degeneration in slow Wallerian degeneration mice: A crucial role of tubulin deacetylation [J]. Neuroscience,2007, 147(3): 599-612.[127] Nimmagadda V K, Bever C T, Vattikunta N R, et al. Overexpression of SIRT1 protein in neurons protects against experimental autoimmune encephalomyelitis through activation of multiple SIRT1 targets [J]. The Journal of Immunology, 2013, 190(9):4595-4607.[128] Bizat N, Peyrin J M, Haik S, et al. Neuron dysfunction is induced by prion protein with an insertional mutation via a Fyn kinase and reversed by sirtuin activation in caenorhabditis elegans [J]. The Journal of Neuroscience, 2010, 30(15): 5394-5403.[129] Seo J S, Moon M H, Jeong J K, et al. SIRT1, a histone deacetylase, regulates prion protein-induced neuronal cell death [J]. Neurobiology of Aging, 2012,33(6): 1110-1120.[130] Jeong J K, Moon M H, Lee Y J, et al. Autophagy induced by the class III histone deacetylase Sirt1 prevents prion peptide neurotoxicity [J]. Neurobiology of Aging, 2013, 34(1): 146-156.[131] Bodkin N L, Alexander T M, Ortmeyer H K, et al. Mortality and morbidity in laboratory-maintained Rhesus monkeys and effects of long-term dietary restriction [J]. Journals of Gerontology Series A: Biological Sciences & Medical Sciences, 2003, 58(3): 212-219.[132] Mattison J A, Roth G S, Beasley T M, et al.Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study [J]. Nature,2012, 489(7415): 318-321.[133] Kim H S, Xiao C, Wang R H, et al. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis [J]. Cell Metabolism, 2010, 12(3): 224-236.[134] Shao J, Liu T, Xie Q R, et al. Adjudin attenuates lipopolysaccharide (LPS)- and ischemia-induced microglial activation [J]. Journal of Neuroimmunology,2013, 254(1-2): 83-90.[135] Mouchiroud L, Houtkooper R H, Moullan N, et al. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling [J]. Cell, 2013, 154(2): 430-441.[136] Gomes A P, Price N L, Ling A J Y, et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging [J]. Cell, 2013, 155(7): 1624-1638.[137] Yoshino J, Mills K F, Yoon M J, et al. Nicotinamide mononucleotide, a key NAD+ intermediate,treats the pathophysiology of diet- and age-induced diabetes in mice [J]. Cell Metabolism, 2011, 14(4):528-536.[138] Canto C, Houtkooper R H, Pirinen E, et al. The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat dietinduced obesity [J]. Cell Metabolism, 2012, 15(6):838-847. |
[1] | ZHANG Yue (张月), LIU Shijie (刘世界), LI Chunlai (李春来), WANG Jianyu (王建宇). Application of Deep Learning Method on Ischemic Stroke Lesion Segmentation [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 99-111. |
[2] | LIU Jianyu (刘健宇), MU Zhihao (木志浩), WANG Liping (王丽萍), WEN Ruoxue (闻若雪), WANG Yongting (王永亭), YANG Guoyuan (杨国源), ZHANG Zhijun (张志君) . Reduction of Brain Injury After Stroke in Hyperglycemic Rats via Fasudil Pretreatment [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(6): 723-731. |
[3] | JIANG Anfeng1,LI Ruihai2,NIU Ping3,WANG Guoli2,HUANG Bai1,FU Zhengcai1. Impact of Subsequent Strokes on Lightning Shielding Failure Outage Rate of Transmission Lines [J]. Journal of Shanghai Jiaotong University, 2015, 49(04): 411-417. |
[4] | WANG Kun-Peng, XUE Hong-Xiang, TANG Wen-Yong. Numerical Simulation of Hydropneumatic Tensioner for Coupled Deepwater Platform System [J]. Journal of Shanghai Jiaotong University, 2012, 46(10): 1652-1657. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||