Journal of shanghai Jiaotong University (Science) ›› 2013, Vol. 18 ›› Issue (2): 190-196.doi: 10.1007/s12204-013-1382-5
• Articles • Previous Articles Next Articles
HUANG Xiao-guang1,2 (黄小光), XU Jin-quan1* (许金泉), FENG Miao-lin1 (冯淼林)
Online:
2013-04-30
Published:
2013-05-10
Contact:
XU Jin-quan (许金泉)
E-mail:jqxu@sjtu.edu.cn
CLC Number:
HUANG Xiao-guang1,2 (黄小光), XU Jin-quan1* (许金泉), FENG Miao-lin1 (冯淼林). Energy Principle of Corrosion Environment Accelerating Crack Propagation During Anodic Dissolution Corrosion Fatigue[J]. Journal of shanghai Jiaotong University (Science), 2013, 18(2): 190-196.
[1] Bhuiyan M S, Mutoh Y, Murai T, et al. Corrosion fatigue behavior of extruded magnesium alloy AZ61 under three different corrosive environments [J]. International Journal of Fatigue, 2008, 30(10-11): 1756-1765. [2] Ebara R. Corrosion fatigue crack initiation behavior of stainless steels [J]. Procedia Engineering, 2010, 2(1): 1297-1306. [3] Ishihara S, Nan Z Y, McEvily A J, et al. On the initiation and propagation behavior of corrosion pits during corrosion fatigue process of industrial pure aluminum [J]. International Journal of Fatigue, 2008, 30(9): 1659-1668. [4] Zupanca U, Grumb J. Effect of pitting corrosion on fatigue performance of shot-peened aluminium alloy 7075-T651 [J]. Journal of Materials Processing Technology, 2010, 210(9): 1197-1202. [5] Gao M, Pao P S, Wei R P. Chemical and metallurgical aspects of environmentally assisted fatigue crack growth in 7075-T651 aluminum alloy [J]. Metallurgical and Materials Transactions A, 1988, 19(7): 1739-1750. [6] Schroeder V, Gilbert C J, Ritchie R O. Effect of aqueous environment on fatigue-crack propagation behavior in a Zr-based bulk amorphous metal [J]. Scripta Materialia, 1999, 40(9): 1057-1061. [7] Kim Y H, Fine M E. Fatigue crack initiation and strain-controlled fatigue of some high strength low alloy steels [J]. Metallurgical and Materials Transactions A, 1982, 13(1): 59-72. [8] Wang R. A fracture model of corrosion fatigue crack propagation of aluminum alloys based on the material elements fracture ahead of a crack tip [J]. Engineering Fracture Mechanics, 2008, 30(8): 1376-1386. [9] ZhaoWM, Xin R F, He Z R, et al. Contribution of anodic dissolution to the corrosion fatigue crack propagation of X80 steel in 3.5 wt.% NaCl solution [J]. Corrosion Science, 2012, 63: 387-392. [10] Shen Hai-jun, L¨u Guo-zhi. Effect of anode dissolution on corrosive fatigue crack propagation [J]. Journal of Northwestern Polytechnical University, 2001, 19(2): 225-228 (in Chinese). [11] Menan F, Henaff G. Influence of frequency and exposure to a saline solution on the corrosion fatigue crack propagation behavior of the aluminum alloy 2024 [J]. International Journal of Fatigue, 2009, 31(11-12): 1684-1695. [12] Engelhardt G R, Macdonald D D. Modelling the crack propagation rate for corrosion fatigue at high frequency of applied stress [J]. Corrosion Science, 2010, 52(4): 1115-1122. [13] Meng G Z, Zhang C, Cheng Y F. Effects of corrosion product deposit on the subsequent cathodic and anodic reactions of X-70 steel in near-neutral pH solution [J]. Corrosion Science, 2008, 50(11): 3116-3122. [14] Chun Y G, Pyun S I. Crack closure in the fatigue crack propagation of a Cu-2wt.%Be alloy in dry air and ammoniacal solution [J]. Materials Science and Engineering A, 1996, 206(1): 49-54. [15] Da Fontea M, Romeirob F, De Freitasc M, et al. The effect of microstructure and environment on fatigue crack propagation in 7049 aluminium alloy at negative stress ratios [J]. International Journal of Fatigue, 2003, 25(9-11): 1209-1216. [16] Gangloff R P. Crack size effects on the chemical driving force for aqueous corrosion fatigue [J]. Metallurigical and Materials Transaction A, 1985, 16(5): 953-969. [17] Wang Rong. Corrosion fatigue of metal material [M]. Xi’an: Northwestern Polytechnical University Press, 2001 (in Chinese). [18] Lu Min-xu, Zheng Xiu-lin, Qin Xiong-pu. Progress in research of model of mechanics-chemical interaction in corrosion fatigue [J]. Journal of Chinese Society of Corrosion and Protection, 1991, 11(2): 197-208 (in Chinese). [19] Nguyen O, Repetto E A, Ortiz M, et al. A cohesive model of fatigue crack growth [J]. International Journal of Fracture, 2001, 110(4): 351-369. [20] Liu Jing-jing, Sun Jun-jun, Hu Hai-yun, et al. The life prediction for materials under the corrosion of seawater [J]. Acta Physica Sinica, 2005, 54(5): 2414-2417 (in Chinese). [21] Han Bin, Xing Xiu-san. Stability analysis of a twodimensional dislocation crack model [J]. Acta Mechanical Sinica, 1997, 29(2): 224-230 (in Chinese). [22] Xing X S. Nonequilibrium statistical theory of fatigue fracture I: The microscopic mechanism and statistical nature of fatigue crack growth [J]. Scientia Sinica. Series A: Mathematical, Physical, Astronomical and Technical Sciences, 1986, 29(10): 1051-1062. [23] Fan Tian-you. The kinetic energy formula of a moving crack in nonlinear medium [J]. Journal of Beijing Institute of Technology, 1986(3): 23-27 (in Chinese). |
[1] | ZHU Ye (朱晔), CHEN Xiangyu (陈向禹). Design Method of Anti-Damage and Anti-Crack for Main Parameters of Tunnel Boring Machine Cutter Head [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(5): 876-888. |
[2] | YU Honggan,HUANG Xiaoping,ZHANG Yongkuang. Fatigue Life Prediction of a Hatch Corner Based on the Spectral Analysis and Fatigue Crack Growth Approaches [J]. Journal of Shanghai Jiaotong University, 2019, 53(2): 153-160. |
[3] | ZHANG Chuntao1,LI Zhengliang2,WANG Ruheng1. Quasi-Static Test of Q345 Equal Angles Under the Coupling Action of Corrosion and Fatigue Vibration [J]. Journal of Shanghai Jiaotong University, 2018, 52(2): 152-162. |
[4] | CHEN Kai,DU Donghai,ZHANG Lefu. Corrosion Fatigue Crack Growth Behavior of Alloy 690 in PressurizedWater Reactor Environment [J]. Journal of Shanghai Jiaotong University, 2017, 51(11): 1281-1286. |
[5] | YAN Xiaoshun1,2,HUANG Xiaoping1,LIANG Yuanhua3,LI Luodong3. Stress Intensity Factor Calculation of Surface Crack at Weld Toe of Ocean Engineering Structures Under Wave Loads [J]. Journal of Shanghai Jiaotong University, 2016, 50(02): 288-293. |
[6] | YAN Xiaoshun,HUANG Xiaoping. Prediction of Fatigue Life Reliability for Ship Details Based on Crack Growth [J]. Journal of Shanghai Jiaotong University, 2015, 49(02): 214-219. |
[7] | LIU Yong,CHEN Luyun,YI Hong. Tubular Joint Fatigue Life Reliability Prediction Method Based on Liouville Equation [J]. Journal of Shanghai Jiaotong University, 2014, 48(1): 81-85. |
[8] | HUANG Xiang-ping, WANG Jian-hua. Mesh Generation Technique of Tracing Crack Propagation [J]. Journal of Shanghai Jiao Tong University, 2001, 35(04): 493-495. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 406
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 763
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||