[1] Han J W, Kamber M. Data mining: Concepts and techniques [M]. San Francisco, USA: Morgan Kaufmann Publishers, 2006.[2] Delort J Y. A content-based approach for detecting users’ shift of interests [C]//Proceedings of the 1st InternationalConference on Internet Technologies and Applications. Wrexham, UK: Local Organizing Committee,2005: 1-10.[3] Koychev I, Schwab I. Adaptation to drifting user interests [C]//Proceedings of the 11th European Conference on Machine Learning Workshop: MachineLearning in New Information Age. Barcelona, Spain:Springer-Verlag, 2000: 39-46.[4] Ma S, Li X, Ding Y, et al. A recommender system with interest-drifting [C]//Proceedings of the 8th International Conference on Web Information Systems Engineering.Nancy, France: Springer-Verlag, 2007: 633-642.[5] Zhang P, Pu J, Liu Y, et al. A probabilistic approach for mining drifting user interest [C]//Proceedings of the Joint International Conference on Advances inData and Web Management. Suzhou, China: Springer-Verlag, 2009: 381-391.[6] Koren Y. Collaborative filtering with temporal dynamics[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery andData Mining. San Diego, USA: Association for Computing Machinery, 2009: 447-456.[7] Srikant R, Agrawal R. Mining quantitative association rules in large relational tables [C]// Proceedings of the 1996 ACM SIGMOD International Conference onManagement of Data. Montreal, Canada: Association for Computing Machinery, 1996: 1-12.[8] Deshpande M, Karypis G. Item-based top-N recommendation algorithms [J]. ACM Transactions on Information Systems, 2004, 22(1): 143-177.[9] Bell R, Koren F, Volinsky C. Modeling relationships at multiple scales to improve accuracy of large recommender systems [C]//Proceedings of the 13thACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, USA: Association for Computing Machinery, 2007: 95-104.[10] Han E H, Karypis G. Feature-based recommendation system [C]//Proceedings of the 14th ACM International Conference on Information and KnowledgeManagement. Bremen, Germany: Association for Computing Machinery, 2005: 446-452.[11] Mahmood T, Ricci F. Learning and adaptivity in interactive recommender systems [C]//Proceedings of the 9th International Conference on Electronic Commerce.Minneapolis, USA: Association for Computing Machinery, 2007: 75-84. |