Threshold Signature Scheme with Threshold Verification Based on Multivariate Linear Polynomial
Threshold Signature Scheme with Threshold Verification Based on Multivariate Linear Polynomial
SHEN Zhong-hua (沈忠华), YU Xiu-yuan (于秀源)
(1. Department of Mathematics, Hangzhou Normal University, Hangzhou 310036,
China;
2. Deprtment of Mathematics, Quzhou College, Quzhou 324000, Zhejiang, China)
(1. Department of Mathematics, Hangzhou Normal University, Hangzhou 310036,
China;
2. Deprtment of Mathematics, Quzhou College, Quzhou 324000, Zhejiang, China)
the National Natural Science Foundation of China (No. 10671051), the Natiral Science Foundation of Zhejiang Province (No. Y6110782), and the Key Laboratory Foundation of Hangzhou (No.20100331T11)
SHEN Zhong-hua (沈忠华), YU Xiu-yuan (于秀源) . Threshold Signature Scheme with Threshold Verification Based on Multivariate Linear Polynomial[J]. Journal of shanghai Jiaotong University (Science), 2011, 16(5): 551-556.
Springer-Verlag, 1990: 307-315. [2] Desmedt Y, Frankel Y. Shared generation of authenticators and
signatures [C]// Advances in Cryptology-Crypto-91. New York: Springer-Verlag, 1991: 457-469. [3] Desmedt Y. Threshold cryptosystems [C]// European Transaction on Telecommunications and Related Technologies-5 (5). Berlin: Springer-Verlag,
1994: 35-43. [4] Shamir A. A polynomial time algorithm for breaking the basic
Merkle-Hellman Cryptosystem [C]// Proceeding of the 23 IEEE Symposium Found on Computer Science. New York: Springer-Verlag, 1982: 142-152. [5] Thomas W H. Algebra [M]. New York: Springer-Verlag, 1974: 354. [6] Elgamel T. A PKC and a signature scheme based on discrete logarithm [C]//
IEEE Trans Information Theory-31. New York: IEEE, 1985: 469-472. [7] Schnorr C P. Efficient identification and signature for smart
cards [C]// Advance in Cryptology-Crypto-89. Berlin: Springer-Verlag, 1990: 239-251. [8] Kennetn H, Ray K. Linear algebra [M]. New Jersey: Prentice Hall,