[1] LV Q B, ZHANG R, SUN X M, et al. A digital twindriven human-robot collaborative assembly approach in the wake of COVID-19 [J]. Journal of Manufacturing Systems, 2021, 60: 837-851.
[2] LI X L, ZHAO S G, LIU H. Distributed cooperative coverage of mobile robots with consensus-based connectivity estimation [J]. Journal of Shanghai Jiao Tong University (Science), 2014, 19(3): 279-286.
[3] RIZK Y, AWAD M, TUNSTEL E W. Cooperative heterogeneous multi-robot systems: A survey [J]. ACM Computing Surveys, 2019, 52(2): 29.
[4] RAIBAIL M, RAHMAN A H A, AL-ANIZY G J, et al. Decentralized multi-robot collision avoidance: A systematic review from 2015 to 2021 [J]. Symmetry, 2022, 14(3): 610.
[5] DORIYA R, MISHRA S, GUPTA S. A brief survey and analysis of multi-robot communication and coordination [C]//International Conference on Computing, Communication & Automation. Greater Noida: IEEE, 2015: 1014-1021.
[6] JONES E G, DIAS M B, STENTZ A. Time-extended multi-robot coordination for domains with intra-path constraints [J]. Autonomous Robots, 2011, 30(1): 41-56.
[7] CHEN H, LU P. Real-time identification and avoidance of simultaneous static and dynamic obstacles on point cloud for UAVs navigation [J]. Robotics and Autonomous Systems, 2022, 154: 104124.
[8] TCHUIEV V, SHIMA T. Intercept angle guidance in an obstacle-rich environment [J]. Journal of Guidance, Control, and Dynamics, 2017, 40(6): 1507-1518.
[9] YANG M, ZHANG Y N, TAN N, et al. Concise discrete ZNN controllers for end-effector tracking and obstacle avoidance of redundant manipulators [J]. IEEE Transactions on Industrial Informatics, 2022, 18(5): 3193-3202.
[10] WANG B, ZHANG Y M, ZHANG W. Integrated path planning and trajectory tracking control for quadrotor UAVs with obstacle avoidance in the presence of environmental and systematic uncertainties: Theory and experiment [J]. Aerospace Science and Technology, 2022, 120: 107277.
[11] WANG S, ZHANG J, ZHANG J. Intelligent vehicles formation control based on artificial potential field and virtual leader [J]. Journal of Shanghai Jiao Tong University, 2020, 54(3): 305-311 (in Chinese).
[12] ZHANG Z D, WANG Z J, YU J. Extended dynamic system modulation for real-time obstacle avoidance [J]. Chinese Journal of Aeronautics, 2022, 35(12): 212-225.
[13] JANKOVIC M, SANTILLO M, WANG Y. Multiagent systems with CBF-based controllers: Collision avoidance and liveness from instability [J]. IEEE Transactions on Control Systems Technology, 2024, 32(2): 705-712.
[14] DU H, WANG Z, TANG L, et al. Control barrier function-based control for aircraft avoidance and guidance with dynamic obstacles [J]. Acta Armamentarii, 2023, 44(9): 2814-2823 (in Chinese).
[15] ZENG J, ZHANG B K, SREENATH K. Safety-critical model predictive control with discrete-time control barrier function [C]//2021 American Control Conference. New Orleans: IEEE, 2021: 3882-3889.
[16] BORRELLI F, BEMPORAD A, MORARI M. Predictive control for linear and hybrid systems [M]. Cambridge: Cambridge University Press, 2017.
[17] LINDQVIST B, MANSOURI S S, AGHAMOHAMMADI A A, et al. Nonlinear MPC for collision avoidance and control of UAVs with dynamic obstacles [J]. IEEE Robotics and Automation Letters, 2020, 5(4): 6001-6008.
[18] AMES A D, XU X R, GRIZZLE J W, et al. Control barrier function based quadratic programs for safety critical systems [J]. IEEE Transactions on Automatic Control, 2017, 62(8): 3861-3876.
[19] ZHU H, ALONSO-MORA J. Chance-constrained collision avoidance for MAVs in dynamic environments [J]. IEEE Robotics and Automation Letters, 2019, 4(2): 776-783.
[20] XIONG Y H, ZHAI D H, ZHANG S H, et al. Multilayered safety-critical control design for robotic systems via control barrier functions [C]//2022 41st Chinese Control Conference. Hefei: IEEE, 2022: 3674-3679.
[21] KHALIL H K. Control of nonlinear systems [M]. New York: Prentice Hall, 2002.
[22] BUCH J, LIAO S C, SEILER P. Robust control barrier functions with sector-bounded uncertainties [J]. IEEE Control Systems Letters, 2022, 6: 1994-1999.
[23] RAWLINGS J B, MAYNE D Q, DIEHL M. Model predictive control: theory, computation, and design [M]. Madison: Nob Hill Publishing, 2017.
[24] LI S L, YUAN Z M, CHEN Y, et al. Optimizable control barrier functions to improve feasibility and add behavior diversity while ensuring safety [J]. Electronics, 2022, 11(22): 3657.
|