J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (4): 667-677.doi: 10.1007/s12204-024-2744-x
• Special Issue on Multi-Agent Collaborative Perception and Control • Previous Articles Next Articles
DU Haikuo1,2 (杜海阔), GUO Zhengyu3,4(郭正玉), ZHANG Lulu1,2(章露露), CAI Yunze1,2∗ (蔡云泽)
Accepted:
2023-10-18
Online:
2024-07-14
Published:
2024-07-14
CLC Number:
DU Haikuo1,2 (杜海阔), GUO Zhengyu3,4(郭正玉), ZHANG Lulu1,2(章露露), CAI Yunze1,2∗ (蔡云泽). Multi-Objective Loosely Synchronized Search for Multi-Objective Multi-Agent Path Finding with Asynchronous Actions[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 667-677.
[1] STERN R, STURTEVANT N, FELNER A, et al. Multi-agent pathfinding: Definitions, variants, and benchmarks [J]. Proceedings of the International Symposium on Combinatorial Search, 2021, 10(1): 151-158. [2] LIU Z F, CAO L, LAI J, et al. Overview of multi-agent path finding [J]. Computer Engineering and Applications, 2022, 58(20): 43-62 (in Chinese). [3] WAGNER G, CHOSET H. Subdimensional expansion for multirobot path planning [J]. Artificial Intelligence,2015, 219: 1-24. [4] SHARON G, STERN R, FELNER A, et al. Conflictbased search for optimal multi-agent pathfinding [J]. Artificial Intelligence, 2015, 219: 40-66. [5] SHARON G, STERN R, GOLDENBERG M, et al. The increasing cost tree search for optimal multi-agent pathfinding [J]. Artificial Intelligence, 2013, 195: 470-495. [6] WALKER T T, STURTEVANT N R, FELNER A, et al. Conflict-based increasing cost search [J]. Proceedings of the International Conference on Automated Planning and Scheduling, 2021, 31: 385-395. [7] SURYNEK P. Makespan optimal solving of cooperative path-finding via reductions to propositional satisfiability [DB/OL]. (2016-10-18). https://arxiv.org/abs/1610.05452 [8] SURYNEK P, FELNER A, STERN R, et al. Efficient SAT approach to multi-agent path finding under the sum of costs objective [C]//22nd European Conference on Artificial Intelligence. Amsterdam: IOS Press, 2016: 810-818. [9] WANG J X, LI J Y, MA H, et al. A new constraint satisfaction perspective on multi-agent path finding: Preliminary results [C]//18th International Conference on Autonomous Agents and Multi Agent Systems. Montreal: ACM, 2019: 2253–2255. [10] ERDEM E, KISA D, OZTOK U, et al. A general formal framework for pathfinding problems with multiple agents [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2013, 27(1): 290-296. [11] LAM E, LE BODIC P, HARABOR D, et al. Branchand-cut-and-price for multi-agent path finding [J]. Computers & Operations Research, 2022, 144: 105809. [12] WANG L, WANG B, WANG C X. Collision-free path planning with kinematic constraints in urban scenarios [J]. Journal of Shanghai Jiao Tong University (Science), 2021, 26(5): 731-738. [13] REN Z Q, RATHINAM S, CHOSET H. Subdimensional expansion for multi-objective multi-agent path finding [J]. IEEE Robotics and Automation Letters, 2021, 6(4): 7153-7160. [14] REN Z Q, RATHINAM S, CHOSET H. A conflictbased search framework for multiobjective multiagent path finding [J]. IEEE Transactions on Automation Science and Engineering, 2023, 20(2): 1262-1274. [15] WEISE J, MAI S, ZILLE H, et al. On the scalable multi-objective multi-agent pathfinding problem [C]//2020 IEEE Congress on Evolutionary Computation. Glasgow: IEEE, 2020: 1-8. [16] REN Z Q, RATHINAM S, CHOSET H. Loosely synchronized search for multi-agent path finding with asynchronous actions [C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems. Prague: IEEE, 2021: 9714-9719. [17] ANDREYCHUK A, YAKOVLEV K, SURYNEK P, et al. Multi-agent pathfinding with continuous time [J]. Artificial Intelligence, 2022, 305: 103662. [18] STEWART B S, WHITE C C. Multiobjective A? [J]. Journal of the ACM, 1991, 38(4): 775-814. [19] QIU K J, BAO Z K, CHEN L. Task assignment and path planning for automatic guided vehicles in aircraft assembly workshop [J]. Journal of Shanghai Jiao Tong University, 2023, 57(1): 93-102 (in Chinese). |
[1] | Wang Wei, Zhou Cheng, Jiang Jinlei, Cui Xinyuan, Yan Guozheng, Cui Daxiang. Optimization of Wireless Power Receiving Coil for Near-Infrared Capsule Robot [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 425-432. |
[2] | Li Tao, Zhao Zhigang, Zhu Mingtong, Zhao Xiangtang. Cable Vector Collision Detection Algorithm for Multi-Robot Collaborative Towing System [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 319-329. |
[3] | Fu Yujia, Zhang Jian, Zhou Liping, Liu Yuanzhi, Qin Minghui, Zhao Hui, Tao Wei. Passive Binocular Optical Motion Capture Technology Under Complex Illumination [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 352-362. |
[4] | Nie Wei, Liang Xinwu. Efficient Fully Convolutional Network and Optimization Approach for Robotic Grasping Detection Based on RGB-D Images [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 399-416. |
[5] | ZHAO Yanfei1,2,3(赵艳飞), XIAO Peng4 (肖鹏), WANG Jingchuan1,2,3* (王景川), GUO Rui4*(郭锐). Semi-Autonomous Navigation Based on Local Semantic Map for Mobile Robot [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 27-33. |
[6] | FU Hang1 (傅航),XU Jiangchang1 (许江长), LI Yinwei2,4* (李寅炜),ZHOU Huifang2,4 (周慧芳),CHEN Xiaojun1,3* (陈晓军). Augmented Reality Based Navigation System for Endoscopic Transnasal Optic Canal Decompression [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 34-42. |
[7] | ZHOU Hanwei1 (周涵巍),ZHU Xinping1 (朱心平),MA Youwei2 (马有为),WANG Kundong1* (王坤东). Low Latency Soft Fiberoptic Choledochoscope Robot Control System [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 43-52. |
[8] | HE Guisong (贺贵松), HUANG Xuegong* (黄学功),LI Feng(李峰). Coordination Design of a Power-Assisted Ankle Exoskeleton Robot Based on Active-Passive Combined Drive [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 197-208. |
[9] | LIU Yuesheng (刘月笙), HE Ning∗ (贺宁), HE Lile (贺利乐), ZHANG Yiwen (张译文), XI Kun (习坤), ZHANG Mengrui (张梦芮). Self-Tuning of MPC Controller for Mobile Robot Path Tracking Based on Machine Learning [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1028-1036. |
[10] | DONG Yubo1 (董玉博), CUI Tao1 (崔涛), ZHOU Yufan1 (周禹帆), SONG Xun2 (宋勋), ZHU Yue2 (祝月), DONG Peng1∗ (董鹏). Reward Function Design Method for Long Episode Pursuit Tasks Under Polar Coordinate in Multi-Agent Reinforcement Learning [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 646-655. |
[11] | DONG Dejin1,2 (董德金), DONG Shiyin3 (董诗音), ZHANG Lulu1,2 (章露露), CAI Yunze1,2∗ (蔡云泽). Multi-AGVs Scheduling with Vehicle Conflict Consideration in Ship Outfitting Items Warehouse [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 725-736. |
[12] | LI Shuyi (李舒逸), LI Minzhe (李旻哲), JING Zhongliang∗ (敬忠良). Multi-Agent Path Planning Method Based on Improved Deep Q-Network in Dynamic Environments [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 601-612. |
[13] | XU Yaru(徐亚茹), LI Kehong(李克鸿), SHANG Xinna(商新娜), JIN Xiaoming(金晓明), LIU Rong(刘荣), ZHANG Jiancheng(张建成). Establishment of Constraint Relation of Robot Dynamics Equation Based on Kinematic Influence Coefficients Method [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 450-456. |
[14] | ZHAO Yingce(赵英策), ZHANG Guanghao(张广浩), XING Zhengyu(邢正宇), LI Jianxun(李建勋). Hierarchical Reinforcement Learning Adversarial Algorithm Against Opponent with Fixed Offensive Strategy [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 471-479. |
[15] | LI Ru1 (李茹), CHEN Fang2 (陈方), YU Wenwei3 (俞文伟), IGARASH Tatsuo3,4, SHU Xiongpeng1 (舒雄鹏), XIE Le1,5,6∗ (谢叻). A Novel Cable-Driven Soft Robot for Surgery [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 60-72. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 49
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 265
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||