Journal of shanghai Jiaotong University (Science) ›› 2017, Vol. 22 ›› Issue (3): 343-348.doi: 10.1007/s12204-017-1841-5
Previous Articles Next Articles
ZHANG Bin1,2* (张斌), YU Xiaoming1 (宇晓明), GU Boqin3 (顾伯勤)
Online:
2017-06-02
Published:
2017-06-04
Contact:
ZHANG Bin(张斌)
E-mail:drzhbin@163.com
CLC Number:
ZHANG Bin1,2* (张斌), YU Xiaoming1 (宇晓明), GU Boqin3 (顾伯勤). A Generalized Self-Consistent Model for Interfacial Debonding Behavior of Fiber Reinforced Rubber Matrix Sealing Composites[J]. Journal of shanghai Jiaotong University (Science), 2017, 22(3): 343-348.
[1] | TIAN M, SU L, CAIW T, et al. Mechanical propertiesand reinforcement mechanisms of hydrogenated acrylonitrilebutadiene rubber composites containing fibrillarsilicate nanofibers and short aramid microfibers[J]. Journal of Applied Polymer Science, 2011, 120(3):1439-1447. |
[2] | ZHANG B, GU B Q, YU X M. Failure behaviorof resorcinol-formaldehyde latex coated aramid shortfiber-reinforced rubber sealing under transverse tension[J]. Journal of Applied Polymer Science, 2015,132: 41672. DOI: 10.1002/app.41672 (published online). |
[3] | VAUGHAN T J, MCCARTHY C T. Micromechanicalmodelling of the transverse damage behaviour in fibrereinforced composites [J]. Composites Science andTechnology, 2011, 71(3): 388-396. |
[4] | HOBBIEBRUNKEN T, HOJO M, ADACHI T, et al.Evaluation of interfacial strength in CF/epoxies usingFEM and in-situ experiments [J]. Composites PartA: Applied Science and Manufacturing, 2006, 37(12):2248-2256. |
[5] | CANAL L P, GONZ′ALEZ C, SEGURADO J, et al.Intraply fracture of fiber-reinforced composites: Microscopicmechanisms and modeling [J]. CompositesScience and Technology, 2012, 72(11): 1223-1232. |
[6] | ZHANG Y Y, ZHU S W, LIU Y, et al. The mechanicaland tribological properties of nitric acid-treatedcarbon fiber-reinforced polyoxymethylene composites[J]. Journal of Applied Polymer Science, 2015, 132:41812. DIO: 10.1002/app.41812 (published online). |
[7] | STARINK M J, SYNGELLAKIS S. Shear lag modelsfor discontinuous composites: Fibre end stresses andweak interface layers [J]. Materials Science and Engineering:A, 1999, 270(2): 270-277. |
[8] | MORALEDA J, SEGURADO J, LLORCA J. Finitedeformation of incompressible fiber-reinforced elastomers:A computational micromechanics approach[J]. Journal of the Mechanics and Physics of Solids,2009, 57(9): 1596-1613. |
[9] | LI X, XIA Y, LI Z, et al. Three-dimensional numericalsimulations on the hyperelastic behavior of carbonblackparticle filled rubbers under moderate finite deformation[J]. Computational Materials Science, 2012,55: 157-165. |
[10] | AFONSO J C, RANALLI G. Elastic properties ofthree-phase composites: Analytical model based onthe modified shear-lag model and the method of cells[J]. Composites Science and Technology, 2005, 65(7):1264-1275. |
[11] | WANG X Q, ZHAO W T, FANG B, et al. Micromechanicalanalysis of long fiber-reinforced compositeswith nanoparticle incorporation into the interphase region[J]. Journal of Applied Polymer Science, 2015,132: 41573. DOI: 10.1002/app.41573 (published online). |
[12] | ZHU D S, GU B Q, CHEN Y. Micromechanicalmodel of stress distribution and transfer in short-fiberreinforcedelastomer matrix composite [J]. Journalof Computational and Theoretical Nanoscience,2008,5(8): 1546-1550. |
[13] | YUAN M N, YANY Y Q, HUANG B, et al. Effect ofinterface reaction on interface shear strength of SiCfiber reinforced titanium matrix composites [J]. RareMetal Materials and Engineering, 2009, 38(8): 1321-1324. |
[14] | ZHANGWX, LI L X,WANG T J. Interphase effect onthe strengthening behavior of particle-reinforced metalmatrix composites [J]. Computational Materials Science,2007, 41(2): 145-155. |
[15] | JIANG C P, TONG Z H, CHEUNG Y K. A generalizedself-consistent method for piezoelectric fiber reinforcedcomposites under antiplane shear [J]. Mechanicsof Materials, 2001, 33(5): 295-308. |
[16] | ZHANG B, GU B Q, YU X M. Prediction methodfor longitudinal tensile-modulus of aramid short-fiberreinforcedrubber sealing composites [J]. Journal ofShanghai Jiao Tong University, 2015, 49(1): 96-100(in Chinese). |
[17] | HUANG Y, HU K X, CHANDRA A. A generalizedself-consistent mechanics method for microcrackedsolids [J]. Journal of the Mechanics and Physics ofSolids, 1994, 42(8): 1273-1291. |
[18] | GONZ′ALEZ C, LLORCA J. Mechanical behavior ofunidirectional fiber-reinforced polymers under transversecompression: Microscopic mechanisms and modeling[J]. Composites Science and Technology, 2007,67(13): 2795-2806. |
[19] | SA R, YAN Y, WEI Z H, et al. Surface modificationof aramid fibers by bio-inspired poly(dopamine) andepoxy functionalized silane grafting [J]. ACS AppliedMaterials and Interfaces, 2014, 6(23): 21730-21738. |
[20] | JIM′ENEZ F L, PELLEGRINO S. Constitutive modelingof fiber composites with a soft hyperelastic matrix[J]. International Journal of Solids and Structures,2012, 49(3): 635-647. |
[21] | YUXM, GU B Q, ZHANGB. Effects of short fiber tipgeometry and inhomogeneous interphase on the stressdistribution of rubber matrix sealing composites [J].Journal of Applied Polymer Science, 2015, 132: 41638.DOI: 10.1002/app.41638 (published online). |
[22] | SHEN L X, LI J. Effective elastic moduli of compositesreinforced by particle or fiber with an inhomogeneousinterphase [J]. International Journal of Solidsand Structures, 2003, 40(6): 1393-1409. |
[23] | KIRITSI C C, ANIFANTIS N K. Load carrying characteristicsof short fiber composites containing a heterogeneousinterphase region [J]. Computational MaterialsScience, 2001, 20(1): 86-97. |
[24] | NGABONZIZA Y, LI J, BARRY C F. Electrical conductivityand mechanical properties of multiwalledcarbon nanotube-reinforced polypropylene nanocomposites[J]. Acta Mechanica, 2011, 220(1): 289-298. |
[1] | ZHOU Hanwei1 (周涵巍),ZHU Xinping1 (朱心平),MA Youwei2 (马有为),WANG Kundong1* (王坤东). Low Latency Soft Fiberoptic Choledochoscope Robot Control System [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 43-52. |
[2] | CHEN Xue, ZHU Longyu, XUE Qinyang, WANG Kexiang, HAN Zhilin, LUO Chuyang. Research Progress of Resin Matrix Composites for Air Defense Missiles [J]. Air & Space Defense, 2024, 7(6): 76-95. |
[3] | YAO Dongxu, YU Xing, GU Hao, LI Jiahao, LIU Wen, LI Rui. Research Progress on High-Temperature Resistant Wave Transparent Silicon Nitride Based Ceramics [J]. Air & Space Defense, 2024, 7(6): 46-57. |
[4] | WANG Jinxiao1 (王进潇), CHENG Bin1, 2, 3∗ (程斌), XIANG Sheng1 (向升), LI Sida1 (李思达), YAN Xingfei4 (闫兴非). Static and Fatigue Behavior of Hybrid Bonded/Bolted Glass Fiber Reinforced Polymer Joints Under Tensile Loading [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(5): 817-830. |
[5] | HOU Xiaofan, SUN Jiuzhe, XU Jiawei, HU Chengru, FU Yubin. Inorganic Acid Doped Polyaniline/Carbon Fiber Composite Electrode as a Marine Electric Field Sensor [J]. Journal of Shanghai Jiao Tong University, 2024, 58(3): 391-399. |
[6] | WANG Xianfeng, ZOU Fan, LIU Chang, AN Qinglong, CHEN Ming. Influence of Countersink Fillet Radius on Mechanical Performance of CFRP/Al Bolted Joints [J]. Journal of Shanghai Jiao Tong University, 2024, 58(3): 342-351. |
[7] | XU Rongxia, GAO Jianxiong, ZHU Pengnian, WU Zhifeng. A Fatigue Life Prediction Method for Fiber-Reinforced Composite Laminates [J]. Journal of Shanghai Jiao Tong University, 2024, 58(3): 400-410. |
[8] | CHENG Xiangwei, ZHANG Daxu, DU Yonglong, GUO Hongbao, HONG Zhiliang. In-Situ X-Ray CT Characterization of Damage Mechanism of Plain Weave SiCf/SiC Composites Under Compression [J]. Journal of Shanghai Jiao Tong University, 2024, 58(2): 232-241. |
[9] | Jeong-Woong Shin, Dong-Je Kim, Tae-Min Jang, Won Bae Han, Joong Hoon Lee, Gwan-Jin Ko, Seung Min Yang, Kaveti Rajaram, Sungkeun Han, Heeseok Kang, Jun Hyeon Lim, Chan-Hwi Eom, Amay J. Bandodkar, Hanul Min, Suk-Won Hwang. Highly Elastic, Bioresorbable Polymeric Materials for Stretchable, Transient Electronic Systems [J]. Nano-Micro Letters, 2024, 16(1): 102-. |
[10] | Ying Wu, Chao An, Yaru Guo, Yangyang Zong, Naisheng Jiang, Qingbin Zheng, Zhong-Zhen Yu. Highly Aligned Graphene Aerogels for Multifunctional Composites [J]. Nano-Micro Letters, 2024, 16(1): 118-. |
[11] | Lixue Gai, Yahui Wang, Pan Wan, Shuping Yu, Yongzheng Chen, Xijiang Han, Ping Xu, Yunchen Du. Compositional and Hollow Engineering of Silicon Carbide/Carbon Microspheres as High-Performance Microwave Absorbing Materials with Good Environmental Tolerance [J]. Nano-Micro Letters, 2024, 16(1): 167-. |
[12] | Meng Lian, Wei Ding, Song Liu, Yufeng Wang, Tianyi Zhu, Yue-E. Miao, Chao Zhang, Tianxi Liu. Highly Porous Yet Transparent Mechanically Flexible Aerogels Realizing Solar-Thermal Regulatory Cooling [J]. Nano-Micro Letters, 2024, 16(1): 131-. |
[13] | Yiding Li, Li Wang, Youzhi Song, Wenwei Wang, Cheng Lin, Xiangming He. Functional Optical Fiber Sensors Detecting Imperceptible Physical/Chemical Changes for Smart Batteries [J]. Nano-Micro Letters, 2024, 16(1): 154-. |
[14] | Siavash Iravani, Rajender S. Varma. MXenes for Bioinspired Soft Actuators: Advancements in Angle-Independent Structural Colors and Beyond [J]. Nano-Micro Letters, 2024, 16(1): 142-. |
[15] | Zejun Sun, Jinlin Yang, Hongfei Xu, Chonglai Jiang, Yuxiang Niu, Xu Lian, Yuan Liu, Ruiqi Su, Dayu Liu, Yu Long, Meng Wang, Jingyu Mao, Haotian Yang, Baihua Cui, Yukun Xiao, Ganwen Chen, Qi Zhang, Zhenxiang Xing, Jisheng Pan, Gang Wu, Wei Chen. Enabling an Inorganic-Rich Interface via Cationic Surfactant for High-Performance Lithium Metal Batteries [J]. Nano-Micro Letters, 2024, 16(1): 141-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||