Journal of Shanghai Jiao Tong University ›› 2024, Vol. 58 ›› Issue (3): 391-399.doi: 10.16183/j.cnki.jsjtu.2022.156
• Materials Science and Engineering • Previous Articles Next Articles
HOU Xiaofan, SUN Jiuzhe, XU Jiawei, HU Chengru, FU Yubin()
Received:
2022-05-13
Revised:
2022-06-20
Accepted:
2022-07-13
Online:
2024-03-28
Published:
2024-03-28
CLC Number:
HOU Xiaofan, SUN Jiuzhe, XU Jiawei, HU Chengru, FU Yubin. Inorganic Acid Doped Polyaniline/Carbon Fiber Composite Electrode as a Marine Electric Field Sensor[J]. Journal of Shanghai Jiao Tong University, 2024, 58(3): 391-399.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2022.156
Tab.2
Contribution of different nitrogen groups produced by fine spectrum fitting to N 1s photoelectron spectrum
样品 | 贡献率/% | 贡献值 | |||
---|---|---|---|---|---|
—N= | —NH— | N+ | N+/N | —N=/—NH— | |
398.5 eV | 399.6 eV | 401.1 eV 402.6 eV | |||
PANI/CF-HCl | 11.91 | 55.55 | 32.54 | 32.54 | 0.21 |
PANI/CF-H2SO4 | 18.51 | 47.51 | 33.98 | 33.98 | 0.39 |
PANI/CF-H3PO4 | 15.62 | 51.82 | 32.56 | 32.56 | 0.30 |
Tab.2
Actual measurement amplitude of PANI/CF electrodes mV
配对电极 | 实测幅值 | ||||||
---|---|---|---|---|---|---|---|
1 mV/0.1 Hz | 3.7 mV/0.1 Hz | 10 mV/0.1 Hz | 37 mV/0.1 Hz | 150 mV/0.1 Hz | 100 mV/0.1 Hz | 370 mV/0.1 Hz | |
PANI/CF-HCl | 0.12 | 0.42 | 1.13 | 4.17 | 5.63 | 11.27 | 41.69 |
PANI/CF-H2SO4 | 0.077 | 0.29 | 0.78 | 2.89 | 3.91 | 7.83 | 28.97 |
PANI/CF-H3PO4 | 0.11 | 0.39 | 1.06 | 3.91 | 5.29 | 10.58 | 39.18 |
[1] | 杨国义. 舰船水下电磁场国外研究现状[J]. 舰船科学技术, 2011, 33(12): 138-143. |
YANG Guoyi. Situation on underwater electromagnetic field researches of ships abroad[J]. Ship Science & Technology, 2011, 33(12): 138-143. | |
[2] |
COMMER M, NEWMAN G A. New advances in three-dimensional controlled-source electromagnetic inversion[J]. Geophysical Journal International, 2008, 172(2): 513-535.
doi: 10.1111/gji.2008.172.issue-2 URL |
[3] |
SONG Y, LI H, WANG Y M. Ocean electric field tests of carbon fiber electrodes prepared by nitric acid oxidation[J]. Materials Science, 2021, 27(1): 96-102.
doi: 10.5755/j02.ms.20907 URL |
[4] |
LIU A, FU Y B, ZAI J Z, et al. Electrochemical and electric field response properties of highly sensitive electrodes based on carbon fiber with oxygen and nitrogen surface groups[J]. IEEE Sensors Journal, 2019, 19(11): 3966-3974.
doi: 10.1109/JSEN.7361 URL |
[5] | WANG Z D, DENG M, CHEN K, et al. Development and evaluation of an ultralow-noise sensor system for marine electric field measurements[J]. Sensors & Actuators A: Physical, 2014, 213: 70-78. |
[6] | 李红霞, 宋玉苏, 申振, 等. Ag/AgCl电极海洋电场探测机理研究[J]. 海军工程大学学报, 2020, 32(1): 57-61. |
LI Hongxia, SONG Yusu, SHEN Zhen, et al. Research on mechanism of marine electric field detection based on Ag/AgCl electrode[J]. Journal of Naval University of Engineering, 2020, 32(1): 57-61. | |
[7] |
ZAI X R, LIU A, TIAN Y H, et al. Oxidation modification of polyacrylonitrile-based carbon fiber and its electro-chemical performance as marine electrode for electric field test[J]. Journal of Ocean University of China, 2020, 19(2): 361-368.
doi: 10.1007/s11802-020-4178-x |
[8] | 李洋, 李佳, 毛楚儒, 等. 聚苯胺及其高温碳化对海底微生物燃料电池阴极电化学性能影响[J]. 材料开发与应用, 2020, 35(4): 62-68. |
LI Yang, LI Jia, MAO Churu, et al. Effect of pyrolyzed polyaniline modified cathode on the electrochemical performance of marine sediment microbial fuel cells[J]. Development & Application of Materials, 2020, 35(4): 62-68. | |
[9] |
WEI G, GONG S S, TANG J, et al. Preparation by pulsed current electrochemical polymerisation and properties of ordered comb-shaped polyaniline/carbon fibres composites for flexible supercapacitor electrodes[J]. Transactions of the IMF, 2020, 98(2): 98-104.
doi: 10.1080/00202967.2020.1728051 URL |
[10] |
BOOTA M, GOGOSI Y. MXene-conducting polymer asymmetric pseudocapacitors[J]. Advanced Energy Materials, 2019, 9(7): 1802917.
doi: 10.1002/aenm.v9.7 URL |
[11] | AHMAD F, DAUD W M A W, AHMAD M A, et al. The effects of acid leaching on porosity and surface functional groups of cocoa (Theobroma cacao)-shell based activated carbon[J]. Chemical Engineering Research & Design, 2013, 91(6): 1028-1038. |
[12] | ABDIRYIM T, ZHANG X G, JAMAL R. Comparative studies of solid-state synthesized polyaniline doped with inorganic acids[J]. Materials Chemistry & Physics, 2005, 90(2/3): 367-372. |
[13] |
KUMAR S N, GAILLARD F, BOUYSSOUX G, et al. High-resolution XPS studies of electrochemically synthesized conducting polyaniline films[J]. Synthetic Metals, 1990, 36(1): 111-127.
doi: 10.1016/0379-6779(90)90240-L URL |
[14] |
GOLCZAK S, KANCIURZEWSKA A, FAHLMAN M, et al. Comparative XPS surface study of polyaniline thin films[J]. Solid State Ionics, 2008, 179(39): 2234-2239.
doi: 10.1016/j.ssi.2008.08.004 URL |
[15] |
KANG E T, NEOH K G, TAN K L, et al. Protonation of the amine nitrogens in emeraldine-evidence from X-ray photoelectron spectroscopy[J]. Synthetic Metals, 1992, 46(2): 227-233.
doi: 10.1016/0379-6779(92)90346-K URL |
[16] | KANG E T, NEOH K G, TAN K L, et al. X-ray photoelectron spectroscopy studies of some polyaniline-halogen complexes[J]. Molecular Crystals & Liquid Crystals Incorporating Nonlinear Optics, 1990, 178(1): 219-230. |
[17] |
HATCHETT D W, JOSOWICZ M, JANATA J. Acid doping of polyaniline: Spectroscopic and electrochemical studies[J]. The Journal of Physical Chemistry B, 1999, 103(50): 10992-10998.
doi: 10.1021/jp991110z URL |
[18] | 黄惠, 郭忠诚. 导电聚苯胺基复合阳极材料的制备[M]. 北京: 冶金工业出版社, 2016: 222. |
HUANG Hui, GUO Zhongcheng. Preparation of conductive polyaniline matrix composite anode material[M]. Beijing: Metallurgical Industry Press, 2016: 222. | |
[19] | 黄惠, 郭忠诚. 导电聚苯胺的制备及应用[M]. 北京: 科学出版社, 2010: 87. |
HUANG Hui, GUO Zhongcheng. Preparation and application of conductive polyaniline[M]. Beijing: Science Press, 2010: 87. | |
[20] |
LI J, LIU K, XUE G B, et al. Electricity generation from water droplets via capillary infiltrating[J]. Nano Energy, 2018, 48: 211-216.
doi: 10.1016/j.nanoen.2018.02.061 URL |
[21] |
LI J, LIU K, DING T P, et al. Surface functional modification boosts the output of an evaporation-driven water flow nanogenerator[J]. Nano Energy, 2019, 58: 797-802.
doi: 10.1016/j.nanoen.2019.02.011 URL |
[22] |
申振, 宋玉苏, 王月明. 高性能碳纤维水下电场电极制备及其性能测量[J]. 兵工学报, 2017, 38(11): 2190-2197.
doi: 10.3969/j.issn.1000-1093.2017.11.015 |
SHEN Zhen, SONG Yusu, WANG Yueming. Preparation and performance measurement of high performance underwater carbon fiber electric field electrode[J]. Acta Armamentarii, 2017, 38(11): 2190-2197.
doi: 10.3969/j.issn.1000-1093.2017.11.015 |
|
[23] | 潘龙. 用于目标探测的水下电场传感器研究[D]. 长沙: 国防科学技术大学, 2015. |
PAN Long. Study on the underwater electric field sensor used in target detection[D]. Changsha: National University of Defense Technology, 2015. | |
[24] | PENG Q Y, LI Y B, HE X D, et al. Interfacial enhancement of carbon fiber composites by poly (amido amine) functionalization[J]. Composites Science & Technology, 2013, 74: 37-42. |
[1] | Lei ZHANG, Qinghua LIU, Xiaobo DUAN, Shuhe LU, Xiaohu HUA. Design of a Comprehensive Experiment for Preparation and Characterization Evaluation of in situ formed Ag Catalyst [J]. Research and Exploration in Laboratory, 2017, 36(5): 64-67. |
[2] | LIU Yun-jian1,2,3* (刘云建), LIU San-bing2 (刘三兵), CHEN Xiao-hua2 (陈效华), CHEN Long3 (陈龙). Improvement the Electrochemical Performance of Li1.2Ni0.2Mn0.6O2 Electrode with AlF3 Added [J]. Journal of shanghai Jiaotong University (Science), 2012, 17(6): 697-700. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||