Journal of Shanghai Jiao Tong University(Science) ›› 2015, Vol. 20 ›› Issue (6): 660-669.doi: 10.1007/s12204-015-1674-z
• Research article • Previous Articles Next Articles
Ming-hui ZHANG, Xiao-yang HE, Shen-yuan DU, Qie-gen* LIU
Received:
2013-10-24
Online:
2015-12-20
Published:
2020-10-09
Supported by:
CLC Number:
Ming-hui ZHANG, Xiao-yang HE, Shen-yuan DU, Qie-gen* LIU. A Generalized Two-Level Bregman Method with Dictionary Updating for Non-Convex Magnetic Resonance Imaging Reconstruction[J]. Journal of Shanghai Jiao Tong University(Science), 2015, 20(6): 660-669.
[1] | Lustig M, Donoho D, Pauly J M.Sparse MRI: The application of compressed sensing for rapid MR imaging[J]. Magnetic Resonance in Medicine, 2007, 58(6): 1182-1195. |
[2] | Lin F H, Kwong K K, Belliveau J W,et al.Parallel imaging reconstruction using automatic regularization[J]. Magnetic Resonance in Medicine, 2004, 51(3): 559-567. |
[3] | Qu P, Luo J, Zhang B,et al.An improved iterative SENSE reconstruction method[J]. Magnetic Resonance Engineering, 2007, 31(1): 44-50. |
[4] | Lin F H, Wang F N, Ahlfors S P,et al.Parallel MRI reconstruction using variance partitioning regularization[J]. Magnetic Resonance in Medicine, 2007, 58(4): 735-744. |
[5] | Liang D, Liu B, Wang J,et al.Accelerating SENSE using compressed sensing[J]. Magnetic Resonance in Medicine, 2009, 62(6): 1574-1584. |
[6] | Candès E J, Romberg J, Tao T.Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. |
[7] | Donoho D L.Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. |
[8] | Tropp J A, Gilbert A C.Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. |
[9] | Block K T, Uecker M, Frahm J.Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint[J]. Magnetic Resonance in Medicine, 2007, 57(6): 1086-1098. |
[10] | Ma S, Yin W, Zhang Y,et al.An efficient algorithm for compressed MR imaging using total variation and wavelets [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska, USA: IEEE, 2008: 1-8. |
[11] | Trzasko J, Manduca A. Highly undersampled magnetic resonance image reconstruction via homotopic $l_0$ minimization [J]. IEEE Transactions on Medical Imaging, 2009, 28(1): 106-121. |
[12] | Wong A, Mishra A, Fieguth P,et al. Sparse reconstruction of breast MRI using homotopic $l_0$ minimization in a regional sparsified domain [J]. IEEE Transactions on Biomedical Engineering, 2013, 60(3): 743-752. |
[13] | Shi J P, Ren X, Dai G,et al.A non-convex relaxation approach to sparse dictionary learning [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Providence, Rhode Island, USA: IEEE, 2011: 1809-1816. |
[14] | Akcakaya M, Nam S, Hu P,et al.Compressed sensing with wavelet domain dependencies for coronary MRI: A retrospective study[J]. IEEE Transactions on Medical Imaging, 2011, 30(5): 1090-1099. |
[15] | Ramani S, Fessler J A.Parallel MR image reconstruction using augmented Lagrangian methods[J]. IEEE Transactions on Medical Imaging, 2011, 30(3): 694-706. |
[16] | Aharon M, Elad M, Bruckstein A.K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322. |
[17] | Elad M, Aharon M.Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing, 2006, 15(12): 3736-3745. |
[18] | Otazo R, Sodickson D K.Adaptive compressed sensing MRI [C]// Proceedings of the 18th Annual Meeting of ISMRM. Stockholm, Sweden: ISMRM, 2010: 4867. |
[19] | Bilgin A, Kim Y, Liu F,et al.Dictionary design for compressed sensing MRI [C]// Proceedings of the 18th Annual Meeting of ISMRM. Stockholm, Sweden: ISMRM, 2010: 4887. |
[20] | Chen Y, Ye X, Huang F. A novel method and fast algorithm for MR image reconstruction with significantly under-sampled data[J]. Inverse Problems and Imaging, 2010, 4(2): 223-240. |
[21] | Ravishankar S, Bresler Y. MR image reconstruction from highly undersampled $k$-space data by dictionary learning[J]. IEEE Transactions on Medical Imaging, 2011, 30(5): 1028-1041. |
[22] | Chartrand R.Exact reconstructions of sparse signals via nonconvex minimization[J]. IEEE Signal Processing Letters, 2007, 14(10): 707-710. |
[23] | Chartrand R, Yin W.Iteratively reweighted algorithms for compressive sensing [C]// Proceedings of the 33rd International Conference on Acoustics, Speech, and Signal Processing. Las Vegas, Nevada, USA: IEEE, 2008: 3869-3872. |
[24] | Liu Q, Wang S, Luo J.A novel predual dictionary learning algorithm[J]. Journal of Visual Communication Image Represention, 2012, 23(1): 182-193. |
[25] | Liu Q, Luo J, Wang S,et al.An augmented Lagrangian multi-scale dictionary learning algorithm[J]. EURASIP Journal on Advances in Signal Processing, 2011, 58(1): 1-16. |
[26] | Yin W, Osher S, Goldfarb D,et al. Bregman iterative algorithms for $l_0$-minimization with applications to compressed sensing [J]. SIAM Journal on Imaging Sciences, 2008, 1(1): 143-168. |
[27] | Liu Q, Wang S, Yang K,et al.Highly undersampled magnetic resonance imaging reconstruction using two-level Bregman method with dictionary updating[J]. IEEE Transactions on Medical Imaging, 2013, 32(7): 1290-1301. |
[28] | Daubechies I, Defrise M, Mol C D.An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Communications on Pure and Applied Mathematics, 2004, 57(11): 1413-1457. |
[29] | Voronin S, Chartrand R.A new generalized thresholding algorithm for inverse problems with sparsity constraints [C]// Proceedings of the 38th International Conference on Acoustics, Speech, and Signal Processing. Vancouver, Canada: IEEE, 2013. |
[1] | YU Xinyi (禹鑫燚), WU Jiaxin (吴加鑫), XU Chengjun (许成军), LUO Huizhen (罗惠珍), OU Linlin∗ (欧林林). Adaptive Human-Robot Collaboration Control Based on Optimal Admittance Parameters [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 589-601. |
[2] | YU Hao, ZHANG Zhemeng, PENG Sui, ZHANG Zhiqiang, REN Wanxin, LI Canbing. Comparative Analysis of Technical Standards for Offshore Wind Power via VSC-HVDC [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 403-412. |
[3] | ZHANG Liang, QU Gang, LI Huixing, JIN Haochun. Research and Application of Key Technologies of Network Security Situation Awareness for Smart Grid Power Control Systems [J]. Journal of Shanghai Jiao Tong University, 2021, 55(S2): 103-109. |
[4] | XU Haiyu, LUO Kai, HUANG Chuang, ZUO Zhenhao, GU Jianxiao. Variation Characteristics of Formation and Development of Ventilated Supercavity at Low Froude Numbers [J]. Journal of Shanghai Jiao Tong University, 2021, 55(8): 934-941. |
[5] | YAO Shengjian, YAN Guozheng, WANG Zhiwu, ZHOU Zerun, JIANG Pingping, DING Zifan, HUA Fangfang, ZHAO Kai, HAN Ding. Low-Power Consumption Design and Optimization of New Artificial Anal Sphincter [J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 899-906. |
[6] | HE Jinhui, LI Mingguang, CHEN Jinjian, XIA Xiaohe. Particle-Fluid Coupling Algorithm Considering Dynamic Fluid Mesh [J]. Journal of Shanghai Jiao Tong University, 2021, 55(6): 645-651. |
[7] | CHEN Feier (陈飞儿), ZHAO Qiyuan (赵祺源), CAO Mingming (曹明明), CHEN Jiayi (陈嘉屹), FU Guiyuan (傅桂元). Adaptive Agent-Based Modeling Framework for Collective Decision-Making in Crowd Building Evacuation [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 522-533. |
[8] | WU Lihong, FENG Xisheng, YE Zuolin, LI Yiping. Physics-Based Simulation of AUV Forced Diving by Self-Propulsion [J]. Journal of Shanghai Jiao Tong University, 2021, 55(3): 290-296. |
[9] | TAN Jia, LI Zhiyi, YANG Huan, ZHAO Rongxiang, JU Ping. A Multi-Level Collaborative Load Forecasting Method for Distribution Networks Based on Distributed Optimization [J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1544-1553. |
[10] | LÜ Xiangmei, LIU Tianqi, LIU Xuan, HE Chuan, NAN Lu, ZENG Hong. Low-Carbon Economic Dispatch of Multi-Energy Park Considering High Proportion of Renewable Energy [J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1586-1597. |
[11] | WEI Lishen, FENG Yuang, FANG Jiakun, AI Xiaomeng, WEN Jinyu. Impact of Renewable Energy Integration on Market-Clearing Results in Spot Market Environment [J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1631-1639. |
[12] | HUANG Ningning (黄宁宁), MA Yixin (马艺馨), ZHANG Mingzhu (张明珠), GE Hao (葛浩), WU Huawei (吴华伟). Finite Element Modeling of Human Thorax Based on MRI Images for EIT Image Reconstruction [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 33-39. |
[13] | CHEN Longsheng, WANG Qi, HE Guoyi. Adaptive Control of Non-Affine Pure Feedback Nonlinear Switching Systems [J]. Journal of Shanghai Jiaotong University, 2020, 54(9): 981-986. |
[14] | MEI Hantong, MA Lijuan, WU Guanghui, SHAO Xiang, XU Pengya. Adaptive Backstepping Attitude Control System Design of Long-range Missile [J]. Air & Space Defense, 2020, 3(3): 118-123. |
[15] | ZHAO Ting, WANG Shentao, NIU Lin, XI Peili, CAI Yunze. Detection Algorithm of Ship Wake in SAR Images [J]. Journal of Shanghai Jiao Tong University, 2020, 54(12): 1259-1268. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||