[1] Makridakis S, Wheelwright S, Hyndman R. Forecasting: Methods and applications [M]. New York: Wiley, 1998.[2] Yu L, Lai K K, Wang S. Multistage RBF neural network ensemble learning for exchange rates forecasting [J]. Neurocomputing, 2008, 71(10): 3295-3302.[3] Dong R, Pedrycz W. A granular time series approach to long-term forecasting and trend forecasting [J]. Physica A, 2008, 387(5): 3253-3270.[4] Wagner N, Michalewicz Z, Khouja M, et al. Time series forecasting for dynamic environments: The Dy-For genetic program model [J]. IEEE Transactions on Evolutionary Computation, 2007, 11(4): 433-452.[5] Kulesh M, Holschneider M, Kurennaya K. Adaptive metrics in the nearest neighbours method [J]. Physics D, 2008, 237(5): 283-291.[6] Cao L J, Tay F E H. Support vector machine with adaptive parameters in financial time series forecasting [J]. IEEE Transactions on Neural Networks, 2003, 14(6): 1506-1518.[7] Zhang G P, Kline D M. Quarterly time-series forecasting with neural networks [J]. IEEE Transactions on Neural Networks, 2007, 18(6): 1800-1814.[8] Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications [J]. Neurocomputing, 2006, 70(12): 489-501.[9] Vairappan C, Tamura H, Gao S, et al. Batch type local search-based adaptive neuro-fuzzy inference system (ANFIS) with self-feedbacks for time-series prediction [J]. Neurocomputing, 2009, 72(3): 1870-1877.[10] Lin Z, Zhang D, Gao L, et al. Using an adaptive self-tuning approach to forecast power loads [J]. Neurocomputing, 2008, 71(1): 559-563.[11] Liang N Y, Huang G B, Saratchandran P, et al.A fast and accurate online sequential learning algorithm for feedforward networks [J]. IEEE Transactions on Neural Networks, 2006, 17(11): 1411-1423. |