[1] DUAN J J, YAN Y Q, YANG N N, et al. International comparison analysis of China's cancer incidence and mortality [J]. Chinese Journal of the Frontiers of Medical Science (Electronic Version), 2016, 8(7): 17-23 (in Chinese).
[2] LUZZI S, GIOTTA LUCIFERO A, MARTINELLI A, et al. Supratentorial high-grade gliomas: Maximal safe anatomical resection guided by augmented reality high-definition fiber tractography and fluorescein [J]. Neurosurgical Focus, 2021, 51(2): E5.
[3] MCGIRT M J, CHAICHANA K L, ATTENELLO F J, et al. Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas [J]. Neurosurgery, 2008, 63(4): 700-708.
[4] GERARD I J, KERSTEN-OERTEL M, DROUIN S, et al. Combining intraoperative ultrasound brain shift correction and augmented reality visualizations: A pilot study of eight cases [J]. Journal of Medical Imaging, 2018, 5(2): 021210.
[5] NARASIMHAN S, WEIS J A, LUO M, et al. Accounting for intraoperative brain shift ascribable to cavity collapse during intracranial tumor resection [J]. Journal of Medical Imaging, 2020, 7(3): 031506.
[6] ZHOU Z Y, YANG Z Y, JIANG S, et al. Augmented reality surgical navigation system based on the spatial drift compensation method for glioma resection surgery [J]. Medical Physics, 2022, 49(6): 3963-3979.
[7] BAYER S, MAIER A, OSTERMEIER M, et al. Intraoperative imaging modalities and compensation for brain shift in tumor resection surgery [J]. International Journal of Biomedical Imaging, 2017, 2017: 6028645.
[8] XU X B, ZHANG J L, LI G, et al. Brain and lesion shift during neuronavigated operations in supratentorial cerebral lesions [J]. Chinese Journal of Modern Operative Surgery, 2005, 9(6): 458-460 (in Chinese).
[9] ZENG C. Application of intraoperative ultrasound assisted with neuronavigation in brian tumor resection: A prospective study [D]. Hengyang: University of South China, 2019 (in Chinese).
[10] YANG R, LI C Y, TU P X, et al. Development and application of digital maxillofacial surgery system based on mixed reality technology [J]. Frontiers in Surgery, 2022, 8: 719985.
[11] DE ALMEIDA A G C, FERNANDES DE OLIVEIRA SANTOS B, OLIVEIRA J L M. A neuronavigation system using a mobile augmented reality solution [J]. World Neurosurgery, 2022, 167: e1261-e1267.
[12] HUANG C H, HSIEH C H, LEE J D, et al. A CT-ultrasound-coregistered augmented reality enhanced image-guided surgery system and its preliminary study on brain-shift estimation [J]. Journal of Instrumentation, 2012, 7(8): P08016.
[13] JIANG Y H, YANG L, JU Y. A method for modeling cerebral hematoma with multilayer non-uniform structure: CN 105877848A [P]. 2018-08-24 [2023-09-07] (in Chinese).
[14] GONG H B, YANG H Z, CAO J, et al. A ventricular puncture model: CN113409665A [P]. 2021-09-17 [2023-09-07] (in Chinese).
[15] WU Z L, WANG S Y, CHEN Z, et al. Vertebral templates combined with augmented reality technology for guidance of pedicle screw placement [J]. International Journal of Clinical and Experimental Medicine, 2022, 15(12): 414-422.
[16] IVAN M E, EICHBERG D G, DI L, et al. Augmented reality head-mounted display-based incision planning in cranial neurosurgery: A prospective pilot study [J]. Neurosurgical Focus, 2021, 51(2): E3.
[17] FRANTZ T, JANSEN B, DUERINCK J, et al. Augmenting Microsoft’s HoloLens with vuforia tracking for neuronavigation [J]. Healthcare Technology Letters, 2018, 5(5): 221-225.
[18] JIANG T R, ZHU M, ZAN T, et al. A novel augmented reality-based navigation system in perforator flap transplantation - A feasibility study [J]. Annals of Plastic Surgery, 2017, 79(2): 192-196.
[19] IVERSEN D H, WEIN W, LINDSETH F, et al. Automatic intraoperative correction of brain shift for accurate neuronavigation [J]. World Neurosurgery, 2018, 120: e1071-e1078.
[20] GERARD I J, KERSTEN-OERTEL M, PETRECCA K, et al. Brain shift in neuronavigation of brain tumors: A review [J]. Medical Image Analysis, 2017, 35: 403-420.
[21] LéGER é, REYES J, DROUIN S, et al. MARIN: An open-source mobile augmented reality interactive neuronavigation system [J]. International Journal of Computer Assisted Radiology and Surgery, 2020, 15(6): 1013-1021.
[22] MOON H C, PARK S J, KIM Y D, et al. Navigation of frameless fixation for gamma knife radiosurgery using fixed augmented reality [J]. Scientific Reports, 2022, 12(1): 4486.
[23] DHO Y S, PARK S J, CHOI H, et al. Development of an inside-out augmented reality technique for neurosurgical navigation [J]. Neurosurgical Focus, 2021, 51(2): E21.
[24] SA? B, ZIVKOVIC D, POJSKIC M, et al. Navigated intraoperative 3D ultrasound in glioblastoma surgery: Analysis of imaging features and impact on extent of resection [J]. Frontiers in Neuroscience, 2022, 16: 883584.
[25] TOMAIUOLO F, RAFFA G, MORELLI A, et al. Sulci and gyri are topological cerebral landmarks in individual subjects: A study of brain navigation during tumour resection [J]. The European Journal of Neuroscience, 2022, 55(8): 2037-2046. |