J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (4): 733-743.doi: 10.1007/s12204-024-2576-8
收稿日期:
2023-09-07
接受日期:
2023-12-14
出版日期:
2025-07-31
发布日期:
2025-07-31
王佳瑜 1,王殊轶 1,卫永旭 2,廖晨聪 3,尚寒冰 2,王雪 1,康宁 1
Received:
2023-09-07
Accepted:
2023-12-14
Online:
2025-07-31
Published:
2025-07-31
摘要: 本研究的目的是建立多元非线性回归数学模型预测脑肿瘤切除手术中肿瘤的移位,并与增强现实技术结合实现三维可视化,提高肿瘤全切率和手术成功率。根据患者术前 MRI 影像数据重建 3D 虚拟模型并 3D 打印,以凝胶注塑的方式制作大脑仿生模型。以对术中病变移位影响较大的术中脑脊液流失量和肿瘤囊液流失量 2 个因素为自变量,确定在肿瘤手术体位后的在垂直骨窗方向上的最高点的移位量为因变量。在仿生模型上进行正交实验建立预测模型,并将该预测模型写入增强现实导航系统中。为验证该预测模型,5 名受试者佩戴HoloLens2,将患者 3D 虚拟模型叠加在真实的头部模型上;分别测试真实模型上肿瘤最高点移位后的空间坐标(实测坐标)及虚拟模型上肿瘤最高点移位后的空间坐标(预测坐标),两者的差值即为模型的预测误差。结果显示:肿瘤最高点在 X 轴和 Y 轴上的移位量实测值与预测值误差波动范围分别为−0.6787~0.2957 mm 和−0.4314~0.2253 mm;每组实验的相对误差都在 10%以内,该模型具有较好的拟合程度。这种建立回归模型的方法是为预测特定情况下脑肿瘤移位进行的初步尝试,也提供了一种新的思路。通过结合增强现实可视化,以简单经济的方式满足外科医生对预测肿瘤移位和对大脑解剖结构精确定位的需求。
中图分类号:
. 脑肿瘤切除术中的肿瘤移位预测和增强现实可视化[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 733-743.
Wang Jiayu, Wang Shuyi, Wei Yongxu, Liao Chencong, Shang Hanbing, Wang Xue, Kang Ning. Tumor Displacement Prediction and Augmented Reality Visualization in Brain Tumor Resection Surgery[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 733-743.
[1] DUAN J J, YAN Y Q, YANG N N, et al. International comparison analysis of China's cancer incidence and mortality [J]. Chinese Journal of the Frontiers of Medical Science (Electronic Version), 2016, 8(7): 17-23 (in Chinese). [2] LUZZI S, GIOTTA LUCIFERO A, MARTINELLI A, et al. Supratentorial high-grade gliomas: Maximal safe anatomical resection guided by augmented reality high-definition fiber tractography and fluorescein [J]. Neurosurgical Focus, 2021, 51(2): E5. [3] MCGIRT M J, CHAICHANA K L, ATTENELLO F J, et al. Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas [J]. Neurosurgery, 2008, 63(4): 700-708. [4] GERARD I J, KERSTEN-OERTEL M, DROUIN S, et al. Combining intraoperative ultrasound brain shift correction and augmented reality visualizations: A pilot study of eight cases [J]. Journal of Medical Imaging, 2018, 5(2): 021210. [5] NARASIMHAN S, WEIS J A, LUO M, et al. Accounting for intraoperative brain shift ascribable to cavity collapse during intracranial tumor resection [J]. Journal of Medical Imaging, 2020, 7(3): 031506. [6] ZHOU Z Y, YANG Z Y, JIANG S, et al. Augmented reality surgical navigation system based on the spatial drift compensation method for glioma resection surgery [J]. Medical Physics, 2022, 49(6): 3963-3979. [7] BAYER S, MAIER A, OSTERMEIER M, et al. Intraoperative imaging modalities and compensation for brain shift in tumor resection surgery [J]. International Journal of Biomedical Imaging, 2017, 2017: 6028645. [8] XU X B, ZHANG J L, LI G, et al. Brain and lesion shift during neuronavigated operations in supratentorial cerebral lesions [J]. Chinese Journal of Modern Operative Surgery, 2005, 9(6): 458-460 (in Chinese). [9] ZENG C. Application of intraoperative ultrasound assisted with neuronavigation in brian tumor resection: A prospective study [D]. Hengyang: University of South China, 2019 (in Chinese). [10] YANG R, LI C Y, TU P X, et al. Development and application of digital maxillofacial surgery system based on mixed reality technology [J]. Frontiers in Surgery, 2022, 8: 719985. [11] DE ALMEIDA A G C, FERNANDES DE OLIVEIRA SANTOS B, OLIVEIRA J L M. A neuronavigation system using a mobile augmented reality solution [J]. World Neurosurgery, 2022, 167: e1261-e1267. [12] HUANG C H, HSIEH C H, LEE J D, et al. A CT-ultrasound-coregistered augmented reality enhanced image-guided surgery system and its preliminary study on brain-shift estimation [J]. Journal of Instrumentation, 2012, 7(8): P08016. [13] JIANG Y H, YANG L, JU Y. A method for modeling cerebral hematoma with multilayer non-uniform structure: CN 105877848A [P]. 2018-08-24 [2023-09-07] (in Chinese). [14] GONG H B, YANG H Z, CAO J, et al. A ventricular puncture model: CN113409665A [P]. 2021-09-17 [2023-09-07] (in Chinese). [15] WU Z L, WANG S Y, CHEN Z, et al. Vertebral templates combined with augmented reality technology for guidance of pedicle screw placement [J]. International Journal of Clinical and Experimental Medicine, 2022, 15(12): 414-422. [16] IVAN M E, EICHBERG D G, DI L, et al. Augmented reality head-mounted display-based incision planning in cranial neurosurgery: A prospective pilot study [J]. Neurosurgical Focus, 2021, 51(2): E3. [17] FRANTZ T, JANSEN B, DUERINCK J, et al. Augmenting Microsoft’s HoloLens with vuforia tracking for neuronavigation [J]. Healthcare Technology Letters, 2018, 5(5): 221-225. [18] JIANG T R, ZHU M, ZAN T, et al. A novel augmented reality-based navigation system in perforator flap transplantation - A feasibility study [J]. Annals of Plastic Surgery, 2017, 79(2): 192-196. [19] IVERSEN D H, WEIN W, LINDSETH F, et al. Automatic intraoperative correction of brain shift for accurate neuronavigation [J]. World Neurosurgery, 2018, 120: e1071-e1078. [20] GERARD I J, KERSTEN-OERTEL M, PETRECCA K, et al. Brain shift in neuronavigation of brain tumors: A review [J]. Medical Image Analysis, 2017, 35: 403-420. [21] LÉGER É, REYES J, DROUIN S, et al. MARIN: An open-source mobile augmented reality interactive neuronavigation system [J]. International Journal of Computer Assisted Radiology and Surgery, 2020, 15(6): 1013-1021. [22] MOON H C, PARK S J, KIM Y D, et al. Navigation of frameless fixation for gamma knife radiosurgery using fixed augmented reality [J]. Scientific Reports, 2022, 12(1): 4486. [23] DHO Y S, PARK S J, CHOI H, et al. Development of an inside-out augmented reality technique for neurosurgical navigation [J]. Neurosurgical Focus, 2021, 51(2): E21. [24] SAß B, ZIVKOVIC D, POJSKIC M, et al. Navigated intraoperative 3D ultrasound in glioblastoma surgery: Analysis of imaging features and impact on extent of resection [J]. Frontiers in Neuroscience, 2022, 16: 883584. [25] TOMAIUOLO F, RAFFA G, MORELLI A, et al. Sulci and gyri are topological cerebral landmarks in individual subjects: A study of brain navigation during tumour resection [J]. The European Journal of Neuroscience, 2022, 55(8): 2037-2046. |
[1] | . 基于增强现实和超细径摄像头的胸腔闭式引流穿刺可视化系统[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 417-424. |
[2] | 傅航1,许江长 1,李寅炜2,4,周慧芳2,4,陈晓军1,3. 基于视频图像增强现实的视神经管减压手术导航系统[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 34-42. |
[3] | 孔会扬1, 王殊轶1, 张璨2, 陈赞2, 3. 手术导板辅助增强现实技术与传统技术在椎弓根螺钉放置中的比较[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 10-17. |
[4] | Sahaya Anselin Nisha1, NARMADHA R.1, AMIRTHALAKSHMI T. M.2, BALAMURUGAN V.1, VEDANARAYANAN V.1. LOBO优化的深度卷积神经网络用于脑肿瘤分类[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 107-114. |
[5] | 于佳琪1,王殊轶1,王浴屺1,谢华2,吴张檑1,付小妮1,马邦峰1. 基于增强现实技术的新型经皮肾穿刺训练可视化工具[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 517-. |
[6] | 李勇, 张梦骏, 仇栋, 范云锋, 苏智勇, 邱令存. 数据驱动的指控系统增强现实电子沙盘设计与开发[J]. 空天防御, 2021, 4(2): 27-33. |
[7] | 邓念晨,杨旭波. 光学透视增强现实眼镜研究热点[J]. 上海交通大学学报, 2018, 52(10): 1255-1266. |
[8] | 王月,张树生,何卫平,白晓亮. 基于模型的增强现实无标识三维注册追踪方法[J]. 上海交通大学学报, 2018, 52(1): 83-89. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||