J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (5): 791-800.doi: 10.1007/s12204-022-2553-z
张赫,周正凯,林环宇,王天慈
接受日期:
2021-12-08
出版日期:
2024-09-28
发布日期:
2024-09-28
ZHANG He(张赫),ZHOU Zhengkai(周正凯), LIN Huanyu(林环宇),WANG Tianci(王天慈)
Accepted:
2021-12-08
Online:
2024-09-28
Published:
2024-09-28
摘要: 为保障进港集卡车队在港区经过公铁平交道口时不受列车的影响直接进入港口,减少车辆在港口前的排队,赋予进港集卡优先通行权。基于关键车道优先思想,依靠车速引导信息引导车队合理变速,推迟或提前到达铁道闸口,同时以交叉口延误、排队长度以及停车次数最小为优化目标,重新优化港区公铁平交道口信号配时方案。选取大连市大窑湾港区公铁平交道口实测数据,在VISSIM环境下对COM进行二次开发实现了车速引导下的信号优化控制,对原配时方案、多目标配时优化方案以及关键车道优先下的优化方案进行仿真实验。结果表明:多目标优化方案和关键车道优先下的优化方案总体上均可提高公铁平交道口通行能力。关键车道优先下的多目标优化方案效果更加适应公铁平交道口,较原方案延误降低了33.3%,停车次数降低了25%,车辆尾气排放量降低了31.3%,证明了关键车道优先下的港区公铁平交道口优化方案的有效性。
中图分类号:
张赫, 周正凯, 林环宇, 王天慈. 关键车道优先下的港区公铁平交道口优化研究[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(5): 791-800.
ZHANG He(张赫), ZHOU Zhengkai(周正凯), LIN Huanyu(林环宇), WANG Tianci(王天慈). Optimization of Highway-Railway Level Crossing in Port Area with Priority of Key Lanes[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(5): 791-800.
[1] GAO Y F, XU L H, HU H, et al. Multi-objective optimization method for fixed-time signal control at intersection [J]. China Journal of Highway and Transport, 2011, 24(5): 82-88 (in Chinese). [2] YANG Z S, QU X, LIN C Y, et al. Traffic signal optimization method considering low emissions and short delay [J]. Journal of South China University of Technology (Natural Science Edition),2015, 43(10): 29-34(in Chinese). [3] WU H, JIAO Y B, PENG Q Y. Multi-objective optimization research on intersection signal timing based on ARRB model [J]. Journal of Transportation Engineering and Information, 2020, 18(2): 139-147 (in Chinese). [4] WU X L, HU S, CHENG W. Multi-objective signal timing optimization based on improved whale optimization algorithm[J]. Journal of Kunming University of Science and Technology (Natural Science Edition),2021, 46(1): 134-141 (in Chinese). [5] STEVANOVIC A, MARTIN P T, STEVANOVIC J. Vissim-based genetic algorithm optimization of signal timings [J]. Transportation Research Record: Journal of the Transportation Research Board, 2007, 2035(1): 59-68. [6] KWAK J, PARK B, LEE J. Evaluating the impacts of urban corridor traffic signal optimization on vehicle emissions and fuel consumption [J]. Transportation Planning and Technology, 2012, 35(2): 145-160. [7] DE COENSEL B, CAN A, DEGRAEUWE B, et al. Effects of traffic signal coordination on noise and air pollutant emissions [J]. Environmental Modelling & Software, 2012, 35: 74-83. [8] LI Y, GUO X C, TAO S R, et al. NSGA-II based traffic signal control optimization algorithm for oversaturated intersection group [J]. Journal of Southeast University (English Edition), 2013, 29(2): 211-216. [9] WU C X, ZHAO G Z, OU B. A fuel economy optimization system with applications in vehicles with human drivers and autonomous vehicles [J]. Transportation Research Part D: Transport and Environment, 2011,16(7): 515-524. [10] ZHENG C, ZHENG C J. Research and Application of Bus Speed Induction [J]. Journal of Zhengzhou University (Engineering Science), 2013, 34(1): 19-22 (in Chinese). [11] MA W J, WU M M, HAN B X, et al. Bus signal priority control method for isolated intersection based on dynamic variable speed adjustment [J]. China Journal of Highway and Transport, 2013, 26(2): 127-133 (in Chinese). [12] WANG B J, WANG W, YANG M, et al. BRT speed induction based on Kalman travel time prediction [J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(1): 41-46 (in Chinese). [13] ZHANG P, LI W Q, CHANG Y L, et al. Optimal control model of multiple bus signal priority requests for isolated intersection based on speed guidance [J]. China Journal of Highway and Transport, 2017, 30(9): 109-115 (in Chinese). [14] SHI Q, CHEN L J, CHEN Y K. Speed guidance strategy of intelligent connected vehicle platoon at signalized intersection [J]. Journal of Chongqing Jiaotong University (Natural Sciences), 2021, 40(2): 47-53 (in Chinese). [15] YANG B. Research on signal coordinated control technology of modern streetcar and conventional bus [D]. Nanjing: Southeast University, 2018 (in Chinese). [16] FU X K, CAO C Y, LI B, et al. A signal control method at intersection under a condition of modern tram [J]. Journal of Transport Information and Safety, 2020, 38(6): 46-54 (in Chinese). [17] LIU Q F, LU B C, MA Q L, et al. Traffic signal control multi-objective optimization at intersection [J]. Technology & Economy in Areas of Communications, 2014, 16(1): 47-50 (in Chinese). [18] WU S K, CHEN C Y, ZHU S L. Timing optimisation for intersection signal based on multi-colony ant algorithm [J]. Computer Applications and Software, 2014, 31(5): 83-88 (in Chinese). [19] ZHOU S P. Research on traffic signal control strategies in urban intersections based on emission factors[D]. Wuhan: Wuhan University of Technology, 2009 (in Chinese). [20] HUANG H Q. Application and simulation of signal timing method based on multi-objective joint optimization [J]. Journal of Guangxi University of Science and Technology, 2018, 29(3): 102-107 (in Chinese). [21] YAN Y X, LI W Q. Ant colony optimization for signalized intersection [J]. Journal of Highway and Transportation Research and Development, 2006, 23(11): 116-119 (in Chinese). [22] ZHANG L X. Multi-objective optimization of signal timing at network congestion intersection [D]. Chengdu: Southwest Jiaotong University, 2015 (in Chinese). [23] SUN D, ZHANG L H, CHEN F X. Comparative study on simulation performances of CORSIM and VISSIM for urban street network [J]. Simulation Modelling Practice and Theory, 2013, 37: 18-29. [24] ZHANG Y. Application of VISSIM-COM technology in the priority control of tram cars [J]. Railway Operation Technology, 2019, 25(2): 49-52 (in Chinese). |
[1] | 钟科星, 丁乐声, 张 聪, 毛彦东, 陈金龙. 基于神经网络的风电海缆弯曲限制器优化设计[J]. 海洋工程装备与技术, 2024, 11(1): 70-76. |
[2] | 彭斌, 刘慧鑫, 陶耀辉. 基于变径基圆渐开线涡旋压缩机的几何模型及优化研究[J]. 上海交通大学学报, 2023, 57(8): 1046-1054. |
[3] | 马洲俊, 王勇, 王杰, 陈少宇. 柔性控制器MMC子模块最优冗余数量双重协同优化方法[J]. 上海交通大学学报, 2022, 56(3): 325-332. |
[4] | 何维, 孙宏磊, 陶袁钦, 蔡袁强. 开挖引起的隧道位移动态多目标优化反演预测[J]. 上海交通大学学报, 2022, 56(12): 1688-1699. |
[5] | 杨博, 王俊婷, 俞磊, 曹璞璘, 束洪春, 余涛. 基于孔雀优化算法的配电网储能系统双层多目标优化配置[J]. 上海交通大学学报, 2022, 56(10): 1294-1307. |
[6] | 李玲芳, 陈占鹏, 胡炎, 邰能灵, 高孟平, 朱涛. 基于灵活性和经济性的可再生能源电力系统扩展规划[J]. 上海交通大学学报, 2021, 55(7): 791-801. |
[7] | 孙鸿强, 张占月, 方宇强. 基于NSGA-II算法的编队卫星重构策略[J]. 上海交通大学学报, 2021, 55(3): 320-330. |
[8] | 王运龙, 姜云博, 管官, 邢佳鹏, 于光亮. 基于知识工程的船舶机舱设备三维布局设计[J]. 上海交通大学学报, 2021, 55(10): 1219-1227. |
[9] | 刘西, 李贤, 陈伟, 从光涛, 李如飞. 基于NSGA-Ⅲ算法的多目标分配方法研究[J]. 空天防御, 2021, 4(1): 109-116. |
[10] | 邓召学, 杨青桦, 蔡强, 刘天琴. 应用于汽车动力总成启停工况的磁流变悬置设计与试验[J]. 上海交通大学学报, 2021, 55(1): 56-66. |
[11] | 高云凯, 马超, 刘哲, 田林雳. 基于NSGA-III的白车身焊装生产平台的离散拓扑优化[J]. 上海交通大学学报, 2020, 54(12): 1324-1334. |
[12] | 兰宏凯,柳存根,聂鑫. 船体三维曲板展开方法多目标优化模型[J]. 上海交通大学学报, 2020, 54(10): 1101-1107. |
[13] | 施振兴, 管再升, 王磊, 施臣钢, 伍彬. 基于遗传算法的自动驾驶仪参数多目标优化研究[J]. 空天防御, 2020, 3(1): 41-49. |
[14] | 赖文星, 贾军, 鲍然, 丁士洲. 基于多目标优化的防空武器拦截方案设计方法[J]. 空天防御, 2019, 2(4): 1-6. |
[15] | 王刚成,马宁,顾解忡. 基于Kriging代理模型的船舶水动力性能多目标快速协同优化[J]. 上海交通大学学报(自然版), 2018, 52(6): 666-673. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||