J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (5): 801-808.doi: 10.1007/s12204-022-2415-8
杜晔1,赵一飞2,高德毅1
接受日期:
2021-09-14
出版日期:
2024-09-28
发布日期:
2024-09-28
DU Ye1 (杜晔), ZHAO Yifei2* (赵一飞), GAO Deyi1 (高德毅)
Accepted:
2021-09-14
Online:
2024-09-28
Published:
2024-09-28
摘要: 集装箱码头外集卡作业时长是港口运营方、外集卡运营商和相关政府机构共同关注的港口运营关键绩效指标之一。通过交通大数据结合集装箱码头的运营特点,采用了系统动力学方法建立外集卡作业时长的系统动力学模型。该模型对外集卡作业时长的仿真结果与实际数据具有一致性,提供了一种有效方式来消除外集卡作业时长的“黑箱”情况。该模型可利用交通大数据在多种作业场景下进行应用,模型的仿真结果可用于相关机构作为预测数据。
中图分类号:
杜晔1, 赵一飞2, 高德毅1. 基于交通大数据的集装箱码头外集卡作业时长仿真预测[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(5): 801-808.
DU Ye1 (杜晔), ZHAO Yifei2 (赵一飞), GAO Deyi1 (高德毅). Predictive Simulation of External Truck Operation Time in a Container Terminal Based on Traffic Big Data[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(5): 801-808.
[1] HAN X L. Resources allocation in container terminal charge/discharge operation [D]. Shanghai: Shanghai Maritime University, 2005 (in Chinese). [2] KAPLAN R S, ANDERSON S. Time-driven activity based costing: A simpler and more powerful path to higher profits [M]. Boston: Harvard Business School Press, 2007. [3] PHAN M H, KIM K H. Collaborative truck scheduling and appointments for trucking companies and container terminals [J]. Transportation Research Part B: Methodological, 2016, 86: 37-50. [4] TENG T. Truck arrival volume prediction method research of container terminals [D]. Dalian: Dalian Maritime University, 2017 (in Chinese). [5] SHAO Q Q, JIN Z H, XING L. Simulation optimization of consolidation and configuration in container terminals based on cooperative appointment [J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(4): 217-224 (in Chinese). [6] TORKJAZI M, HUYNH N, SHIRI S. Truck appointment systems considering impact to drayage truck tours [J]. Transportation Research Part E: Logistics and Transportation Review, 2018, 116: 208-228. [7] NADI A L, SHARMA S, SNELDER M, et al. Shortterm prediction of outbound truck traffic from the exchange of information in logistics hubs: A case study for the port of Rotterdam [J]. Transportation Research Part C : Emerging Technologies, 2021, 127: 103111. [8] DU Y, ZHAO Y F. Classification and prediction of social container trucks in container terminal by decision tree method [J]. Industrial Engineering and Management, 2021, 26(1): 183-190 (in Chinese). [9] WANG J F, LU H P, PENG H. System dynamics model of urban transportation system and its application [J]. Journal of Transportation Systems Engineering and Information Technology, 2008, 8(3): 83-89 (in Chinese). [10] ZHAO P. Research on the allocation of resources for the container terminal based on system dynamics [D]. Dalian: Dalian Maritime University, 2012 (in Chinese). |
[1] | 张晗, 韩冬, 刘坦, 黄燕. 碳中和背景下分布式光伏渗透与售电市场耦合机制分析[J]. 上海交通大学学报, 2023, 57(4): 464-472. |
[2] | 郭璐, 刘晓东, 王玉峰, 张振. 基于大数据推理的装备健康状态控制决策[J]. 空天防御, 2023, 6(3): 85-94. |
[3] | 陈文溆乐, 向月, 彭光博, 刘友波, 刘俊勇. “双碳”目标下电力系统供给侧形态发展系统动力学建模与分析[J]. 上海交通大学学报, 2021, 55(12): 1567-1576. |
[4] | 郭璐, 毛勇, 姚会举. 面向装备综合保障设计的大数据系统研究[J]. 空天防御, 2019, 2(1): 70-75. |
[5] | 宋人杰1,余通1,陈宇红2,陈宇阳2,夏滨2. 基于MapReduce模型的大数据相似重复记录检测算法[J]. 上海交通大学学报(自然版), 2018, 52(2): 214-221. |
[6] | 杜晓旭,崔航. 自主水下航行器载荷侧向分离三维运动仿真分析[J]. 上海交通大学学报(自然版), 2017, 51(12): 1480-1487. |
[7] | 杨辉, 陆建飞, 王建华, 张庆华. 黄浦江过江隧道的动力抗震分析[J]. 上海交通大学学报, 2001, 35(10): 1512-1516. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||