J Shanghai Jiaotong Univ Sci ›› 2023, Vol. 28 ›› Issue (2): 197-206.doi: 10.1007/s12204-021-2288-2
焦鼎,倪藻,王家畴,李昕欣*
收稿日期:
2019-12-24
接受日期:
2020-07-14
出版日期:
2023-03-28
发布日期:
2023-03-21
JIAO Ding (焦 鼎), NI Zao (倪 藻), WANG Jiachou (王家畴), LI Xinxin∗ (李昕欣)
Received:
2019-12-24
Accepted:
2020-07-14
Online:
2023-03-28
Published:
2023-03-21
摘要: 本研究提出了一种新型双悬臂加速度计的设计和微加工工艺技术。传感结构中集成有梳齿和空气微间隙结构,以调节压膜空气阻尼效应,进而有效地优化了传感器的频率响应和带宽特性。由于压阻惠斯通全桥集成在双悬臂梁上实现了高效率的应力集中,实现了对加速度检测的高灵敏度。此外,双悬臂加速度计采用了具有低成本和高成品率的(111)硅单面体微加工工艺来实现制造。传感器测试结果表明,所提出的双悬臂加速度计的灵敏度为0.086~0.088 mV/g/3.3V,全量程的非线性为±(0.09%~0.23%)。动态特性表征结果显示了2.64 kHz的充足频率带宽。传感器具有4.388 kHz谐振频率,并将品质因子(Q值)控制在7.62,与空气阻尼调制效应的设计结果高度一致。该双悬臂加速度计实现了较高的性能,在汽车和消费电子等领域具有很好的应用前景。
中图分类号:
焦鼎, 倪藻, 王家畴, 李昕欣. 压膜空气阻尼调制的高性能单面制造(111)硅双悬臂梁加速度传感器[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(2): 197-206.
JIAO Ding (焦 鼎), NI Zao (倪 藻), WANG Jiachou (王家畴), LI Xinxin∗ (李昕欣). High-Performance Single-Side Fabricated (111)-Silicon Dual-Cantilever Accelerometer with Squeeze-Film Air Damping Modulation[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(2): 197-206.
[1] | NARASIMHAN V, LI H, JIANMIN M. Micromachined high-g accelerometers: A review [J]. Journal of Micromechanics and Microengineering, 2015, 25(3): 033001. |
[2] | RUZZA G, GUERRIERO L, REVELLINO P, et al. Thermal compensation of low-cost MEMS accelerometers for tilt measurements [J]. Sensors, 2018, 18(8): 2536. |
[3] | HAN J, ZHAO Z, NIU W, et al. A low cross-axis sensitivity piezoresistive accelerometer fabricated by masked-maskless wet etching [J]. Sensors and Actuators A: Physical, 2018, 283: 17-25. |
[4] | DONG J, LONG Z, JIANG H, et al. Monolithic-integrated piezoresistive MEMS accelerometer pressure sensor with glass-silicon-glass sandwich structure [J]. Microsystem Technologies, 2017, 23(5): 1563-1574. |
[5] | XIAO D B, LI Q S, HOU Z Q, et al. A novel sandwich differential capacitive accelerometer with symmetrical double-sided serpentine beam-mass structure [J]. Journal of Micromechanics and Microengineering, 2016, 26(2): 025005. |
[6] | CHAE J, KULAH H, NAJAFI K. A CMOS-compatible high aspect ratio silicon-on-glass in-plane micro-accelerometer [J]. Journal of Micromechanics and Microengineering, 2005, 15(2): 336-345. |
[7] | FAN K, CHE L, XIONG B, et al. A silicon micromachined high-shock accelerometer with a bonded hinge structure [J]. Journal of Micromechanics and Microengineering, 2007, 17(6): 1206. |
[8] | SABATO A, NIEZRECKI C, FORTINO G. Wireless MEMS-based accelerometer sensor boards for structural vibration monitoring: A review [J]. IEEE Sensors Journal, 2017, 17(2): 226-235. |
[9] | SHEN S, CHEN J, BAO M. Analysis on twin-mass structure for a piezoresistive accelerometer [J]. Sensors and Actuators A: Physical, 1992, 34(2): 101-107. |
[10] | CRESCINI D, MARIOLI D, TARONI A. Low-cost accelerometers: Two examples in thick-film technology [J]. Sensors and Actuators A: Physical, 1996, 55(2/3): 79-85. |
[11] | DONG J, LI X, WANG Y, et al. Silicon micromachined high-shock accelerometers with a curved-surface-application structure for over-range stop protection and free-mode-resonance depression [J]. Journal of Micromechanics and Microengineering, 2002, 12(6): 742-746. |
[12] | MO Y, DU L, QU B, et al. Squeeze film air damping ratio analysis of a silicon capacitive micromechanical accelerometer [J]. Microsystem Technologies, 2018, 24(2): 1089-1095. |
[13] | KAVITHA C, MADHAN M G. Study of squeeze film damping characteristics under different gas mediums in a capacitive MEMS accelerometer [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 38(1): 241-252. |
[14] | BAO M. Chapter 3: Air damping [M]//Micro mechanical transducers-pressure sensors, accelerometers and gyroscopes. Amsterdam: Elsevier, 2000: 89-137. |
[15] | HSIEH H S, CHANG H C, HU C F, et al. Method for performance improvement and size shrinkage of a three-axis piezoresistive accelerometer with guard-ring structure [C]//SENSORS, 2012 IEEE. Taipei: IEEE, 2012: 1-4. |
[16] | ROY A L, SARKAR H, DUTTA A, et al. A high precision SOI MEMS-CMOS ±4g piezoresistive accelerometer [J]. Sensors and Actuators A: Physical, 2014, 210: 77-85. |
[17] | WEI C, ZHOU W, WANG Q, et al. TPMS (tire-pressure monitoring system) sensors: Monolithic integration of surface-micromachined piezoresistive pressure sensor and self-testable accelerometer [J]. Microelectronic Engineering, 2012, 91: 167-173. |
[1] | 李云龙, 宋振华, 刘伟鹏, 张进, 冯辉. 动基座对准机翼挠曲变形补偿方法研究[J]. 空天防御, 2020, 3(3): 131-136. |
[2] | 金竹雨,张晓晶. 在I型模式下异型截面Z-pin增强效果的数值分析[J]. 上海交通大学学报(自然版), 2016, 50(02): 169-175. |
[3] | 刘洪涛,梁振宁,胡文,莫锦秋,王石刚. 基于数字相关法初始值优化的微悬臂梁弯曲变形与应变测量方法[J]. 上海交通大学学报(自然版), 2014, 48(05): 693-701. |
[4] | 李晓飞,余音. 含横向裂纹悬臂梁的损伤检测[J]. 上海交通大学学报(自然版), 2010, 44(06): 735-0738. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||