J Shanghai Jiaotong Univ Sci ›› 2023, Vol. 28 ›› Issue (2): 192-196.doi: 10.1007/s12204-021-2339-8
鲍海生,刘龙权
收稿日期:
2020-06-17
接受日期:
2020-08-07
出版日期:
2023-03-28
发布日期:
2023-03-21
BAO Haisheng (鲍海生), LIU Longquan∗ (刘龙权)
Received:
2020-06-17
Accepted:
2020-08-07
Online:
2023-03-28
Published:
2023-03-21
摘要: 提出一套石墨烯增强空心微点阵材料的制备方法和工艺技术,主要包括3D打印、纳米复合镀和聚合物蚀刻等先进制造技术。系统地表征和分析了石墨烯增强金属镀层的微观组织形貌和均匀性,并开展了准静态压缩试验,研究了石墨烯增强空心微点阵材料的力学性能。试验结果表明,归功于纳米材料物理和化学分散工艺的综合应用,成功获得了均匀的镍-磷-石墨烯(Ni-P-G)镀层,从而提高了空心微点阵材料的比模量和比强度。在此基础上,对比分析了石墨烯含量对空心微点阵材料力学性能的影响规律,得到了较优的石墨烯含量,并结合细观力学分析模型,揭示了石墨烯对空心微点阵材料弹性模量和强度的影响机理。
中图分类号:
鲍海生, 刘龙权. 石墨烯增强空心微点阵材料的制备与表征[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(2): 192-196.
BAO Haisheng (鲍海生), LIU Longquan∗ (刘龙权). Fabrication and Characterization of Graphene-Enhanced Hollow Microlattice Materials[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(2): 192-196.
[1] | BAUER J, MEZA L R, SCHAEDLER T A, et al. Nanolattices: an emerging class of mechanical metamaterials [J]. Advanced Materials, 2017, 29(40): 1701850. |
[2] | FAN Q, GAO Y, ZHAO Y, et al. Fabrication of diamond-structured composite materials with Ni-P-diamond particles by electroless plating [J]. Materials Letters, 2018, 215: 242-245. |
[3] | MEZA L R, GREER J R. Mechanical characterization of hollow ceramic nanolattices [J]. Journal of Materials Science, 2014, 49(6): 2496-2508. |
[4] | MONTEMAYOR L C, GREER J R. Mechanical response of hollow metallic nanolattices: Combining structural and material size effects [J]. Journal of Applied Mechanics, 2015, 82(7): 071012. |
[5] | ZHENG X, LEE H, WEISGRABER T H, et al. Ultralight, ultrastiff mechanical metamaterials [J]. Science, 2014, 344(6190): 1373-1377. |
[6] | SHI J H, LIU L Q. Creating hollow microlattice materials reinforced by carbon nanotubes for improved mechanical properties [J]. Materials Letters, 2019, 240: 205-208. |
[7] | SONG J, WANG Y, ZHOU W, et al. Topology optimization-guided lattice composites and their mechanical characterizations [J]. Composites Part B: Engineering, 2019, 160: 402-411. |
[8] | WU H, LIU F, GONG W, et al. Preparation of Ni–P–GO composite coatings and its mechanical properties [J]. Surface and Coatings Technology, 2015, 272: 25-32. |
[9] | RANA A R K, FARHAT Z. Preparation and tribological characterization of graphene incorporated electroless Ni-P composite coatings [J]. Surface and Coatings Technology, 2019, 369: 334-346. |
[10] | KURAPOVA O Y, LOMAKIN I V, SERGEEV S N, et al. Fabrication of nickel-graphene composites with superior hardness [J]. Journal of Alloys and Compounds, 2020, 835: 155463. |
[11] | PAPAGEORGIOU D G, KINLOCH I A, YOUNG R J. Mechanical properties of graphene and graphene-based nanocomposites [J]. Progress in Materials Science, 2017, 90: 75-127. |
[12] | BHADAURIA A, SINGH L K, LAHA T. Effect of physio-chemically functionalized graphene nanoplatelet reinforcement on tensile properties of aluminum nanocomposite synthesized via spark plasma sintering [J]. Journal of Alloys and Compounds, 2018, 748: 783-793. |
[13] | BHADAURIA A, SINGH L K, LAHA T. Combined strengthening effect of nanocrystalline matrix and graphene nanoplatelet reinforcement on the mechanical properties of spark plasma sintered aluminum based nanocomposites [J]. Materials Science and Engineering: A, 2019, 749: 14-26. |
[14] | JEONG G, PARK J, NAM S, et al. The effect of grain size on the mechanical properties of aluminum [J]. Archives of Metallurgy and Materials, 2015, 60(2): 1287-1291. |
[15] | RASHAD M, PAN F, TANG A, et al. Effect of Graphene Nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method [J]. Progress in Natural Science: Materials International, 2014, 24(2): 101-108. |
[16] | ZHANG Z, CHEN D L. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength [J]. Scripta Materialia, 2006, 54(7): 1321-1326. |
[1] | 左新德, 陈懿, 李洋, 罗震, 敖三三. 添加钽对电弧熔丝增材制备镍钛形状记忆合金组织性能的影响[J]. 上海交通大学学报, 2024, 58(3): 382-390. |
[2] | 吴靖, 谭海云, 史宇超, 侯伟宏, 汤明. 基于石墨烯和氮化硼的高性能电容器[J]. 上海交通大学学报, 2022, 56(10): 1325-1333. |
[3] | 王烨成, 李洋, 张迪, 杨越, 罗震. 碳纤维增强热塑性复合材料与高强钢的电阻单元焊[J]. 上海交通大学学报, 2022, 56(10): 1349-1358. |
[4] | 张威,敖三三,罗震,郝志壮,陈瑶,冯梦楠,解龑. 焊接能量对铝镍超声波焊接接头性能的影响[J]. 上海交通大学学报, 2019, 53(9): 1130-1135. |
[5] | 朱强,秦飞,王武荣,韦习成. 不同搭接顺序下三层板电阻点焊接头力学性能[J]. 上海交通大学学报, 2019, 53(9): 1122-1129. |
[6] | 何冠中,楼铭,马运五,李永兵. 铝钢电阻单元焊接头力学性能模拟[J]. 上海交通大学学报, 2019, 53(5): 616-623. |
[7] | 祁睿格,何春霞,付菁菁,赵丽梅,姜彩昀. 无机纳米粒子对木粉/高密度聚乙烯木塑复合材料热学及力学性能的影响[J]. 上海交通大学学报(自然版), 2019, 53(3): 373-379. |
[8] | 李萍,张凯,王薄笑天,薛克敏. 7A60铝合金搅拌摩擦加工组织及性能[J]. 上海交通大学学报, 2019, 53(11): 1381-1388. |
[9] | 杜思琦,王继崇,彭雄奇,顾海麟. 可生物降解的黄麻纤维/聚乳酸复合材料的制备和力学性能[J]. 上海交通大学学报, 2019, 53(11): 1335-1341. |
[10] | 尹念,张执南. 石墨烯台阶处摩擦特性的分子动力学模拟[J]. 上海交通大学学报(自然版), 2018, 52(5): 620-623. |
[11] | 俞建超,林有希. 高速加工中无氧铜的动态力学性能[J]. 上海交通大学学报(自然版), 2018, 52(5): 587-592. |
[12] | 唐旻,吴林晟,李晓春,毛军发. 集成电路碳纳米管互连建模与特性研究[J]. 上海交通大学学报(自然版), 2018, 52(10): 1135-1141. |
[13] | 陈建稳1,周涵1,陈务军2,赵兵2,王明洋3. 飞艇用层压织物膜材料在双向应力作用下的弹性参数分析[J]. 上海交通大学学报(自然版), 2017, 51(3): 344-. |
[14] | 金雪,朱平,李晗,王庆. 防松帽搭接焊缝力学性能及分区建模方法[J]. 上海交通大学学报(自然版), 2017, 51(11): 1297-1303. |
[15] | 赵君1,余海东2. 基于绝对节点坐标法的柔性双臂机构动力学分析[J]. 上海交通大学学报(自然版), 2017, 51(10): 1160-1165. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||