J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (5): 900-908.doi: 10.1007/s12204-023-2612-0
SAKTHIESWARAN N. a, MOORTHY N. b, RENISHA M. a, CHINNADURAI M. c
收稿日期:
2022-08-01
接受日期:
2022-10-11
出版日期:
2024-09-28
发布日期:
2024-09-28
作者简介:
(a. Department of Civil Engineering; b. Department of Science and Humanities; c. Department of Computer Science and Engineering, E.G.S. Pillay Engineering College, Nagapattinam 611002, Tamilnadu, India)
SAKTHIESWARAN N.a∗, MOORTHY N.b, RENISHA M.a, CHINNADURAI M.c
Received:
2022-08-01
Accepted:
2022-10-11
Online:
2024-09-28
Published:
2024-09-28
摘要: 本研究的主要目的是通过响应面法设计实验方法优化活性粉末混凝土的新拌和强度性能。该活性粉末混凝土利用超细矿渣等工业副产物替代混凝土,加入粉煤灰和再生混凝土粉末部分替代石英砂。28天的养护期后共考虑了4个响应,即坍落度、抗压强度(C-28)、弯曲强度(F-28)和劈裂抗拉强度(S-28)。活性粉末混凝土的统计研究包括回归建模、正态概率图、曲面图分析和过程变量优化。对考虑的响应(坍落度,C-28,F-28和S-28)进行回归模型检验。采用方差分析(ANOVA)和帕累托图来确定过程变量的统计显著性。通过曲面图分析研究各变量对响应的影响。通过优化响应得到变量相对于响应的最优比例。所得回归方程为二阶多项式方程,强度性能的预测结果与实验结果基本一致。方差比例的差异表明,只有0.43%、6.42%、5.15%和9.7%的偏差不能通过分析来表达。ANOVA和帕累托图反映了滑塌响应线性项和强度响应双向交互项的高显著性和适合性。优化响应结果表明,再生混凝土粉末和粉煤灰的最优配比分别为19.15%和7.02%。
中图分类号:
SAKTHIESWARAN N. a, MOORTHY N. b, RENISHA M. a, CHINNADURAI M. c. 响应面法优化活性粉末混凝土的强度性能[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(5): 900-908.
SAKTHIESWARAN N.a∗, MOORTHY N.b, RENISHA M.a, CHINNADURAI M.c). Optimization of Strength Properties of Reactive Powder Concrete by Response Surface Methodology[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(5): 900-908.
[1] SALAHUDDIN H, ALI QURESHI L, NAWAZ A, et al. Effect of recycled fine aggregates on performance of Reactive Powder Concrete [J]. Construction and Building Materials, 2020, 243: 118223. [2] AMBIKA D, NANDHINI V, SANTHA RUBINI V, et al. An exploration on the durability properties of reactive powder concrete [J]. Materials Today: Proceedings, 2021, 45: 529-534. [3] YAZ?C? H, YARD?MC? M Y, AYD?N S, et al. Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes[J]. Construction and Building Materials, 2009, 23(3):1223-1231. [4] SADREKARIMI A. Development of a light weight reactive powder concrete [J]. Journal of Advanced Concrete Technology, 2004, 2(3): 409-417. [5] A¨?TCIN P C. Cements of yesterday and today [J]. Cement and Concrete Research, 2000, 30(9): 1349-1359. [6] MAYHOUB O A, NASR E S A R, ALI Y A, et al. The influence of ingredients on the properties of reactive powder concrete: A review [J]. Ain Shams Engineering Journal, 2021, 12(1): 145-158. [7] BERREDJEM L, ARABI N, MOLEZ L. Mechanical and durability properties of concrete based on recycled coarse and fine aggregates produced from demolished concrete [J]. Construction and Building Materials, 2020, 246: 118421. [8] ALI QURESHI L, ALI B, ALI A. Combined effects of supplementary cementitious materials (silica fume, GGBS, fly ash and rice husk ash) and steel fiber on the hardened properties of recycled aggregate concrete [J]. Construction and Building Materials, 2020, 263:120636. [9] RAFIEIZONOOZ M, MIRZA J, SALIM M R, et al. Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement [J]. Construction and Building Materials, 2016, 116: 15-24. [10] BALAPOUR M, ZHAO W J, GARBOCZI E J, et al. Potential use of lightweight aggregate (LWA) produced from bottom coal ash for internal curing of concrete systems [J]. Cement and Concrete Composites, 2020,105: 103428. [11] PENG Y Z, ZHANG J, LIU J Y, et al. Properties and microstructure of reactive powder concrete having a high content of phosphorous slag powder and silica fume [J]. Construction and Building Materials, 2015,101: 482-487. [12] GOOI S, MOUSA A A, KONG D. A critical review and gap analysis on the use of coal bottom ash as a substitute constituent in concrete [J]. Journal of Cleaner Production, 2020, 268: 121752. [13] PYO S, KIM H K. Fresh and hardened properties of ultra-high performance concrete incorporating coal bottom ash and slag powder [J]. Construction and Building Materials, 2017, 131: 459-466. [14] RUAN Y F, HAN B G, YU X, et al. Mechanical behaviors of nano-zirconia reinforced reactive powder concrete under compression and flexure [J]. Construction and Building Materials, 2018, 162: 663-673. [15] VIGNESHWARI M, ARUNACHALAM K, ANGAYARKANNI A. Replacement of silica fume with thermally treated rice husk ash in Reactive Powder Concrete [J]. Journal of Cleaner Production, 2018, 188: 264-277. [16] REDDY G G K, RAMADOSS P. Influence of alccofine incorporation on the mechanical behavior of ultra-high performance concrete (UHPC) [J]. Materials Today: Proceedings, 2020, 33: 789-797. [17] CIBILAKSHMI G, JEGAN J. A DOE approach to optimize the strength properties of concrete incorporated with different ratios of PVA fibre and nanoFe2O3 [J]. Advanced Composites Letters, 2020, 29:2633366X2091388. [18] AWOLUSI T F, OKE O L, AKINKUROLERE O O, et al. Application of response surface methodology: Predicting and optimizing the properties of concrete containing steel fibre extracted from waste tires with limestone powder as filler [J]. Case Studies in Construction Materials, 2019, 10: e00212. [19] Ordinary Portland cement 53 grade: IS 12269-2013[S]. New Delhi: Bureau of Indian Standards, 2013. [20] CANBAZ M. The effect of high temperature on reactive powder concrete [J]. Construction and Building Materials, 2014, 70: 508-513. [21] Fresh concrete – methods of sampling, testing and analysis: IS 1199-2018 [S]. New Delhi: Bureau of Indian Standards, 2018. [22] Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens): ASTM C109/C109M-2002 [S]. West Conshohocken: ASTM International, 2002. [23] Standard test method for flexural strength of concrete (using simple beam with center-point loading): ASTM C293-2002 [S]. West Conshohocken: ASTM International, 2002. [24] Standard test method for splitting tensile strength of cylindrical concrete specimens: ASTM C496/C496M-2004 [S]. West Conshohocken: ASTM International,2004. [25] SAKTHIESWARAN N, RENISHA M. Mutual effect of coal bottom ash and recycled fines on reactive powder concrete [J]. Revista Romana De Materiale - Romanian Journal of Materials, 2020, 50(3): 395-402. |
[1] | 左新德, 陈懿, 李洋, 罗震, 敖三三. 添加钽对电弧熔丝增材制备镍钛形状记忆合金组织性能的影响[J]. 上海交通大学学报, 2024, 58(3): 382-390. |
[2] | 鲍海生, 刘龙权. 石墨烯增强空心微点阵材料的制备与表征[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(2): 192-196. |
[3] | 王烨成, 李洋, 张迪, 杨越, 罗震. 碳纤维增强热塑性复合材料与高强钢的电阻单元焊[J]. 上海交通大学学报, 2022, 56(10): 1349-1358. |
[4] | 张威,敖三三,罗震,郝志壮,陈瑶,冯梦楠,解龑. 焊接能量对铝镍超声波焊接接头性能的影响[J]. 上海交通大学学报, 2019, 53(9): 1130-1135. |
[5] | 朱强,秦飞,王武荣,韦习成. 不同搭接顺序下三层板电阻点焊接头力学性能[J]. 上海交通大学学报, 2019, 53(9): 1122-1129. |
[6] | 何冠中,楼铭,马运五,李永兵. 铝钢电阻单元焊接头力学性能模拟[J]. 上海交通大学学报, 2019, 53(5): 616-623. |
[7] | 祁睿格,何春霞,付菁菁,赵丽梅,姜彩昀. 无机纳米粒子对木粉/高密度聚乙烯木塑复合材料热学及力学性能的影响[J]. 上海交通大学学报(自然版), 2019, 53(3): 373-379. |
[8] | 李萍,张凯,王薄笑天,薛克敏. 7A60铝合金搅拌摩擦加工组织及性能[J]. 上海交通大学学报, 2019, 53(11): 1381-1388. |
[9] | 杜思琦,王继崇,彭雄奇,顾海麟. 可生物降解的黄麻纤维/聚乳酸复合材料的制备和力学性能[J]. 上海交通大学学报, 2019, 53(11): 1335-1341. |
[10] | 俞建超,林有希. 高速加工中无氧铜的动态力学性能[J]. 上海交通大学学报(自然版), 2018, 52(5): 587-592. |
[11] | 张扬1,2,陈兵1,赵社戌1,李四平1. 圆钢管粉煤灰混凝土短柱轴压试验的数值模拟[J]. 上海交通大学学报(自然版), 2017, 51(7): 769-773. |
[12] | 陈建稳1,周涵1,陈务军2,赵兵2,王明洋3. 飞艇用层压织物膜材料在双向应力作用下的弹性参数分析[J]. 上海交通大学学报(自然版), 2017, 51(3): 344-. |
[13] | 金雪,朱平,李晗,王庆. 防松帽搭接焊缝力学性能及分区建模方法[J]. 上海交通大学学报(自然版), 2017, 51(11): 1297-1303. |
[14] | 赵君1,余海东2. 基于绝对节点坐标法的柔性双臂机构动力学分析[J]. 上海交通大学学报(自然版), 2017, 51(10): 1160-1165. |
[15] | 郑钰,李宏烨,庄新村,赵震. 金属板料剪切试验方法及应用的研究现状[J]. 上海交通大学学报(自然版), 2014, 48(03): 422-426. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||