J Shanghai Jiaotong Univ Sci ›› 2022, Vol. 27 ›› Issue (5): 621-630.doi: 10.1007/s12204-021-2289-1
收稿日期:
2019-12-05
出版日期:
2022-09-28
发布日期:
2022-09-03
ZHAO Chenliang (赵晨亮), ZHANG Xiuli∗ (张秀丽), HUANG Senwei (黄森威), YAO Yan’an (姚燕安)
Received:
2019-12-05
Online:
2022-09-28
Published:
2022-09-03
中图分类号:
. [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 621-630.
ZHAO Chenliang (赵晨亮), ZHANG Xiuli∗ (张秀丽), HUANG Senwei (黄森威), YAO Yan’an (姚燕安). Effects of Elastic Joints on Performances of a Close-Chained Rod Rolling Robot[J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 621-630.
[1] | LOW K H, HU T J, MOHAMMED S, et al. Perspectives on biologically inspired hybrid and multi-modal locomotion [J]. Bioinspiration & Biomimetics, 2015, 10(2): 020301. |
[2] | KING R S. BiLBIQ: A biologically inspired robot with walking and rolling locomotion [M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. |
[3] | SASTRA J, CHITTA S, YIM M. Dynamic rolling for a modular loop robot [J]. The International Journal of Robotics Research, 2009, 28(6): 758-773. |
[4] | CHOWDHURYA R, SOH G S, FOONG S H, et al. Experiments in robust path following control of a rolling and spinning robot on outdoor surfaces [J]. Robotics and Autonomous Systems, 2018, 106: 140-151. |
[5] | MASUDA Y, ISHIKAWA M. Development of a deformation-driven rolling robot with a soft outer shell [C]//2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). Munich: IEEE, 2017: 1651-1656. |
[6] | PARK S, PARK E, YIM M, et al. Optimization-based nonimpact rolling locomotion of a variable geometry truss [J]. IEEE Robotics and Automation Letters, 2019, 4(2): 747-752. |
[7] | WANG X L, JIN H Z, ZHU Y H, et al. Serpenoid polygonal rolling for chain-type modular robots: A study of modeling, pattern switching and application [J]. Robotics and Computer-Integrated Manufacturing, 2016, 39: 56-67. |
[8] | WANG Y J, WU C L, YU L Q, et al. Trajectory planning of a rolling robot of closed five-bow-shaped-bar linkage [J]. Robotics and Computer-Integrated Manufacturing, 2018, 53: 81-92. |
[9] | WANG Y J, WU C L, YU L Q, et al. Dynamics of a rolling robot of closed five-arc-shaped-bar linkage [J]. Mechanism and Machine Theory, 2018, 121: 75-91. |
[10] | TIAN Y B, YAO Y A, DING W, et al. Design and locomotion analysis of a novel deformable mobile robot with worm-like, self-crossing and rolling motion [J]. Robotica, 2016, 34(9): 1961-1978. [11] TIAN Y B, ZHANG D, YAO Y A, et al. A reconfigurable multi-mode mobile parallel robot [J]. Mechanism and Machine Theory, 2017, 111: 39-65. |
[12] | WEI X Z, TIAN Y B, WEN S S. Design and locomotion analysis of a novel modular rolling robot [J]. Mechanism and Machine Theory, 2019, 133: 23-43. |
[13] | YIM M, ROUFAS K, DUFF D, et al. Modular reconfigurable robots in space applications [J]. Autonomous Robots, 2003, 14(2/3): 225-237. |
[14] | CURTIS S, BRANDT M, BOWERS G, et al. Tetrahedral robotics for space exploration [C]//2007 IEEE Aerospace Conference. Big Sky: IEEE, 2007: 1-9. |
[15] | GOULDING M. Circuits controlling vertebrate locomotion: Moving in a new direction [J]. Nature Reviews Neuroscience, 2009, 10(7): 507-518. |
[16] | GOSWAMI A, VADAKKEPAT P. Humanoid robotics: A reference [M]. Dordrecht: Springer, 2019: 1099-1134. |
[17] | VAN DER NOOT N, IJSPEERT A J, RONSSE R. Bio-inspired controller achieving forward speed modulation with a 3D bipedal walker [J]. The International Journal of Robotics Research, 2018, 37(1): 168-196. |
[18] | YU J Z, CHEN S F, WU Z X, et al. Energy analysis of a CPG-controlled miniature robotic fish [J]. Journal of Bionic Engineering, 2018, 15(2): 260-269. |
[19] | SPR¨OWITZ A, TULEU A, VESPIGNANI M, et al. Towards dynamic trot gait locomotion: Design, control, and experiments with Cheetah-cub, a compliant quadruped robot [J]. The International Journal of Robotics Research, 2013, 32(8): 932-950. |
[20] | COLASANTO L, VAN DER NOOT N, IJSPEERT A J. Bio-inspired walking for humanoid robots using feet with human-like compliance and neuromuscular control [C]//2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids). Seoul: IEEE, 2015: 26-32. |
[21] | HUTTER M, GEHRING C, BLOESCH M, et al. Starleth: a compliant quadrupedal robot for fast, efficient, and versatile locomotion [M]//Adaptive mobile robotics. Singapore: World Scientific, 2012: 483-490. |
[22] | HUTTER M, GEHRING C, LAUBER A, et al. ANYmal - toward legged robots for harsh environments [J]. Advanced Robotics, 2017, 31(17): 918-931. |
[23] | KAKOGAWA A, JEON S, MA S G. Stiffness design of a resonance-based planar snake robot with parallel elastic actuators [J]. IEEE Robotics and Automation Letters, 2018, 3(2): 1284-1291. |
[24] | IRMSCHER C, WOSCHKE E, MAY E, et al. Design, optimisation and testing of a compact, inexpensive elastic element for series elastic actuators [J]. Medical Engineering & Physics, 2018, 52: 84-89. |
[25] | DOS SANTOS W M, CAURIN G A P, SIQUEIRA A A G. Design and control of an active knee orthosis driven by a rotary Series Elastic Actuator [J]. Control Engineering Practice, 2017, 58: 307-318. [26] TSAGARAKIS N G, MORFEY S, MEDRANO CERDA G, et al. COMpliant huMANoid COMAN: Optimal joint stiffness tuning for modal frequency control [C]//2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany: IEEE, 2013: 673-678. |
[27] | SHI R D, ZHANG X L, YAO Y A. A CPG-based control method for the multi-mode locomotion of a desert spider robot [J]. Robot, 2018, 40(2): 146-157(in Chinese). |
[28] | IJSPEERT A J. Central pattern generators for locomotion control in animals and robots: A review [J]. Neural Networks, 2008, 21(4): 642-653. |
[29] | MORO F L, SPR¨OWITZ A, TULEU A, et al. Horselike walking, trotting, and galloping derived from kinematic Motion Primitives (kMPs) and their application to walk/trot transitions in a compliant quadruped robot [J]. Biological Cybernetics, 2013, 107(3): 309- 320. |
[30] | ZHONG G L, CHEN L, JIAO Z D, et al. Locomotion control and gait planning of a novel hexapod robot using biomimetic neurons [J]. IEEE Transactions on Control Systems Technology, 2018, 26(2): 624-636. |
[1] | . 近红外胶囊机器人无线能量接收线圈优化设计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 425-432. |
[2] | . 多机协调吊运系统的绳索矢量碰撞检测算法研究[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 319-329. |
[3] | . 复杂光照下被动式双目光学运动捕捉技术[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 352-362. |
[4] | . 基于RGB-D图像的机器人抓取检测高效全卷积网络和优化方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 399-416. |
[5] | 赵艳飞1,2,3, 肖鹏4, 王景川1,2,3, 郭锐4. 基于局部语义地图的移动机器人半自主导航[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 27-33. |
[6] | 傅航1,许江长 1,李寅炜2,4,周慧芳2,4,陈晓军1,3. 基于视频图像增强现实的视神经管减压手术导航系统[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 34-42. |
[7] | 周涵巍1,朱心平1,马有为2,王坤东1. 低延时纤维胆道镜机器人驱动控制系统[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 43-52. |
[8] | 贺贵松,黄学功,李峰. 基于主被动联合驱动的助力型踝关节外骨骼机器人的协调性设计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 197-208. |
[9] | 刘月笙, 贺宁, 贺利乐, 张译文, 习坤, 张梦芮. 基于机器学习的移动机器人路径跟踪MPC控制器参数自整定[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1028-1036. |
[10] | 李舒逸, 李旻哲, 敬忠良. 动态环境下基于改进DQN的多智能体路径规划方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 601-612. |
[11] | 董玉博1, 崔涛1, 周禹帆1, 宋勋2, 祝月2, 董鹏1. 基于长周期极坐标系追击问题的多智能体强化学习奖赏函数设计方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 646-655. |
[12] | 杜海阔1,2, 郭正玉3,4, 章露露1,2, 蔡云泽1,2. 基于多目标松散同步搜索的多目标多智能体异步路径规划[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 667-677. |
[13] | 董德金1,2,董诗音3,章露露1,2,蔡云泽1,2. 基于A-Star和DWA算法的野外环境路径规划[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 725-736. |
[14] | 徐亚茹1,2,李克鸿1,2,商新娜2,金晓明1,2,刘荣3,张建成1,2. 基于影响系数法的机器人动力学方程约束关系建立[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 450-456. |
[15] | 赵英策1,张广浩2,邢正宇2,李建勋2. 面向确定进攻对手策略的层次强化学习对抗算法研究[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 471-479. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 40
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 380
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||