上海交通大学学报(英文版) ›› 2015, Vol. 20 ›› Issue (1): 56-60.doi: 10.1007/s12204-015-1588-9
WEN Cheng-yu* (文成玉), DONG Liang (董良), JIN Xin (金欣)
出版日期:
2015-02-28
发布日期:
2015-03-10
通讯作者:
WEN Cheng-yu (文成玉)
E-mail:wency@cuit.edu.cn
WEN Cheng-yu* (文成玉), DONG Liang (董良), JIN Xin (金欣)
Online:
2015-02-28
Published:
2015-03-10
Contact:
WEN Cheng-yu (文成玉)
E-mail:wency@cuit.edu.cn
摘要: In order to extract the fault feature frequency of weak bearing signals, we put forward a local mean decomposition (LMD) method combining with the second generation wavelet transform. After performing the second generation wavelet denoising, the spline-based LMD is used to decompose the high-frequency detail signals of the second generation wavelet signals into a number of production functions (PFs). Power spectrum analysis is applied to the PFs to detect bearing fault information and identify the fault patterns. Application in inner and outer race fault diagnosis of rolling bearing shows that the method can extract the vibration features of rolling bearing fault. This method is suitable for extracting the fault characteristics of the weak fault signals in strong noise.
中图分类号:
WEN Cheng-yu* (文成玉), DONG Liang (董良), JIN Xin (金欣). Feature Extraction of Bearing Vibration Signals Using Second Generation Wavelet and Spline-Based Local Mean Decomposition[J]. 上海交通大学学报(英文版), 2015, 20(1): 56-60.
WEN Cheng-yu* (文成玉), DONG Liang (董良), JIN Xin (金欣). Feature Extraction of Bearing Vibration Signals Using Second Generation Wavelet and Spline-Based Local Mean Decomposition[J]. Journal of shanghai Jiaotong University (Science), 2015, 20(1): 56-60.
[1] | Tse P W, Peng Y H, Yam R. Wavelet analysis and envelope detection for rolling element bearing fault diagnosis — their affectivities and flexibilities [J]. Journal of Vibration and Acoustics, 2001, 123: 303-310. |
[2] | Yang W X, Tse P W. Development of an advanced noise reduction method for vibration analysis based on singular value decomposition [J]. NDT & E International,2003, 36(6): 419-432. |
[3] | Antoni J. The spectral kurtosis: A useful tool for characterizing non-stationary signals [J]. Mechanical Systems and Signal Processing, 2006, 20(2): 282-307. |
[4] | Antoni J. Fast computation of the kurtogram for the detection of transient faults [J]. Mechanical Systems and Signal Processing, 2007, 21(1): 108-124. |
[5] | Ricci R, Pennacchi P. Diagnostics of gear faults based on EMD and automatic selection of intrinsic mode functions [J]. Mechanical Systems and Signal Processing, 2011, 25(3): 821-838. |
[6] | Xue Y J, Cao J X, Tian R F, et al. Feature extraction of bearing vibration signals using autocorrelation denoising and improved Hilbert-Huang transformation [J]. International Journal of Digital Content Technology and Its Application, 2012, 6(4): 150-158. |
[7] | Yu D J, Cheng J S, Yang Y. Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings [J]. Mechanical Systems and Signal Processing, 2005, 19(2): 259-270. |
[8] | Peng Z K, Tse PW, Chu F L. An improved Hilbert-Huang transform and its application in vibration analysis [J]. Journal of Sound and Vibration, 2005, 286(1):187-205. |
[9] | Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [C]//Proceedings of the Royal Society. London: the Royal Society, 1998: 903-995. |
[10] | Smith J S. The local mean decomposition and its application to EEG perception data [J]. Journal of the Royal Society Interface, 2005, 2(5): 443-454. |
[11] | Hu Jin-song, Yang Shi-xi, Ren Da-qian. Spline-based local mean decomposition method for vibration signal [J]. Journal of Data Acquisition & Processing, 2009,24(1): 82-86 (in Chinese). |
[12] | Case Western Reserve University Bearing Data Center. Download a data file [EB/OL]. [2011-01-01].http://csegroups.case.edu/bearingdatacenter/pages/download-data-file. |
[1] | YU Kun (俞昆), TAN Jiwen (谭继文), LIN Tianran (林天然). Fault Diagnosis of Rolling Element Bearing Using Multi-Scale Lempel-Ziv Complexity and Mahalanobis Distance Criterion[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(5): 696-701. |
[2] | DENG Shijie (邓士杰), TANG Liwei (唐力伟), ZHANG Xiaotao (张晓涛). Research of Adaptive Neighborhood Incremental Principal Component Analysis and Locality Preserving Projection Manifold Learning Algorithm[J]. sa, 2018, 23(2): 269-275. |
[3] | WU Bin1* (吴斌), XI Lifeng2 (奚立峰), FAN Sixia1 (范思遐), ZHAN Jian1 (占健). Fault Diagnosis for Wind Turbine Based on Improved Extreme Learning Machine[J]. 上海交通大学学报(英文版), 2017, 22(4): 466-473. |
[4] | WANG Yukui1,2* (王余奎), HUANG Zhijie1 (黄之杰), ZHAO Xucheng1 (赵徐成), ZHU Yi1 (朱 毅), W. A Novel De-noising Method Based on Discrete Cosine Transform and Its Application in the Fault Feature Extraction of Hydraulic Pump[J]. 上海交通大学学报(英文版), 2016, 21(3): 297-306. |
[5] | LIU Yinhua1* (刘银华), YE Xialiang1 (叶夏亮), JIN Sun2 (金隼). A Bayesian Based Process Monitoring and Fixture Fault Diagnosis Approach in the Auto Body Assembly Process[J]. 上海交通大学学报(英文版), 2016, 21(2): 164-172. |
[6] | ZHANG Wei1* (张 伟), HOU Yue-min1,2 (侯悦民). Systematic Safety Analysis Method for Power Generating Equipment[J]. 上海交通大学学报(英文版), 2015, 20(4): 508-512. |
[7] | SHANG Qun-li1 (尚群立), ZHANG Zhen2 (张 镇), XU Xiao-bin2* (徐晓滨). Dynamic Fault Diagnosis Using the Improved Linear Evidence Updating Strategy[J]. 上海交通大学学报(英文版), 2015, 20(4): 427-436. |
[8] | LI Hong-kun1 (李宏坤), ZHANG Zhi-xin2* (张志新), LI Xiu-gang3 (李秀刚), REN Yuan-jie1 (任远. Reliability Prediction Method Based on State Space Model for Rolling Element Bearing[J]. 上海交通大学学报(英文版), 2015, 20(3): 317-321. |
[9] | REN Fang-yu (任方宇), SI Shu-bin* (司书宾), CAI Zhi-qiang (蔡志强), ZHANG Shuai (张帅). Transformer Fault Analysis Based on Bayesian Networks and Importance Measures[J]. 上海交通大学学报(英文版), 2015, 20(3): 353-357. |
[10] | BAO Yong-lin (鲍泳林). Primary Research on Real-Time Fault Diagnosis Platform for Fuel Tank System of an Aircraft[J]. 上海交通大学学报(英文版), 2015, 20(3): 358-362. |
[11] | BAI Lu* (白璐), DU Cheng-lie (杜承烈), GUO Yang-ming (郭阳明). A Fuzzy Fault Diagnosis Method for Large Radar Based on Directed Graph Model[J]. 上海交通大学学报(英文版), 2015, 20(3): 363-369. |
[12] | SU Sai-sai1 (苏赛赛), CHEN Ke-wei1,2 (陈克非), HUANG Qiu1* (黄秋). Discriminant Analysis in the Study of Alzheimer’s Disease Using Feature Extractions and Support Vector Machines in Positron Emission Tomography with 18F-FDG [J]. 上海交通大学学报(英文版), 2014, 19(5): 555-560. |
[13] | ZHANG Zhi-fen* (张志芬), ZHONG Ji-yong (钟继勇), CHEN Yu-xi (陈玉喜), CHEN Shan-ben (陈善本). Feature Extraction and Modeling of Welding Quality Monitoring in Pulsed Gas Touch Argon Welding Based on Arc Voltage Signal[J]. 上海交通大学学报(英文版), 2014, 19(1): 11-16. |
[14] | HUANG Shu-ling* (黄蜀玲), PANG Yong-jie (庞永杰), WANG Bo (王 博), WAN Lei (万 磊). Wavelet Moment Invariants Extraction of Underwater Laser Vision Image[J]. 上海交通大学学报(英文版), 2013, 18(6): 712-718. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||