上海交通大学学报(英文版) ›› 2014, Vol. 19 ›› Issue (5): 555-560.doi: 10.1007/s12204-014-1540-4
SU Sai-sai1 (苏赛赛), CHEN Ke-wei1,2 (陈克非), HUANG Qiu1* (黄秋)
出版日期:
2014-10-31
发布日期:
2014-11-12
通讯作者:
HUANG Qiu (黄秋)
E-mail:qiuhuang@sjtu.edu.cn
SU Sai-sai1 (苏赛赛), CHEN Ke-wei1,2 (陈克非), HUANG Qiu1* (黄秋)
Online:
2014-10-31
Published:
2014-11-12
Contact:
HUANG Qiu (黄秋)
E-mail:qiuhuang@sjtu.edu.cn
摘要: With more successful applications of advanced medical imaging technologies in clinical diagnosis, various analytic discriminant approaches, by seeking the imaging based characteristics of a given disease to achieve automatic diagnosis, gain greater attention in the medical community. However the existing computer-aided discriminant procedures for Alzheimer’s disease (AD) are yet to be improved for better identifying patients with mild cognitive impairment (MCI) from those with AD and those who are cognitively normal. In this work we present a computer assisted diagnosis approach by first statistically extracting characteristics from whole brain 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography (18F-FDG PET) images, and then using support vector machines for classification. Evaluations of the proposed procedure with patient data exhibit satisfactory accuracies in distinguishing AD from its early stage MCI, and normal controls.
中图分类号:
SU Sai-sai1 (苏赛赛), CHEN Ke-wei1,2 (陈克非), HUANG Qiu1* (黄秋). Discriminant Analysis in the Study of Alzheimer’s Disease Using Feature Extractions and Support Vector Machines in Positron Emission Tomography with 18F-FDG [J]. 上海交通大学学报(英文版), 2014, 19(5): 555-560.
SU Sai-sai1 (苏赛赛), CHEN Ke-wei1,2 (陈克非), HUANG Qiu1* (黄秋). Discriminant Analysis in the Study of Alzheimer’s Disease Using Feature Extractions and Support Vector Machines in Positron Emission Tomography with 18F-FDG [J]. Journal of shanghai Jiaotong University (Science), 2014, 19(5): 555-560.
[1] Alzheimer’s Association. 2013 Alzheimer’s disease facts and figures [J]. Alzheimer’s & Dementia, 2013,9(2): 208-245. [2] Hampel H, Prvulovic D, Teipel S, et al. The future of Alzheimer’s disease: The next 10 years [J]. Progress in Neurobiology, 2011, 95(4): 718-728. [3] Reiman E M, Jagust W J. Brain imaging in the study of Alzheimer’s disease [J]. NeuroImage, 2012,61(2): 505-516. [4] Querbes O, Aubry F, Pariente J, et al. Early diagnosis of Alzheimer’s disease using cortical thickness:Impact of cognitive reserve [J]. Brain, 2009, 132(8):2036-2047. [5] Duara R, Grady C, Haxby J, et al. Positron emission tomography in Alzheimer’s disease [J]. Neurology,1986, 36(7): 879-887. [6] Norderg A, Rinne J O, Kadir A, et al. The use of PET in Alzheimer disease [J]. Nature Reviews Neurology,2010, 6(2): 78-87. [7] Jagust W J, Bandy D, Chen K, et al. The Alzheimer’s disease neuroimaging initiative positron emission tomography core [J]. Alzheimer’s & Dementia,2010, 6(3): 221-229. [8] Foeter N L, Heidebrink J L, Clark C M, et al. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease [J].Brain, 2007, 130(10): 2616-2635. [9] Du A-T, Schuff N, Kramer J H, et al. Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia [J]. Brain, 2007,130(4): 1159-1166. [10] Dickerson B C, Feczko E, Augustinack J C, et al. Differential effects of aging and Alzheimer’s disease on medial temporal lobe cortical thickness and surface area [J]. Neurobiology of Aging, 2009, 30(3): 432-440. [11] Gray K R, Wolz R, Keihaninejad S, et al. Regional analysis of FDG-PET for use in the classification of Alzheimer’s disease [C]// 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Chicago, USA: IEEE, 2011: 1082-1085. [12] Gray K R, Woiz R, Heckemann R A, et al. Multiregion analysis of longitudinal FDG-PET for the classification of Alzheimer’s disease [J]. NeuroImage, 2012,60(1): 221-229. [13] Salmon E, Sadzot B, Maquet P, et al. Differential diagnosis of Alzheimer’s disease with PET [J]. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 1994, 35(3): 391-398. [14] Mosconi L. Glucose metabolism in normal aging and Alzheimer’s disease: Methodological and physiological considerations for PET studies [J]. Clinical and Translational Imaging, 2013, 1(4): 217-233. [15] Ill′an I, Gorriz J, Lopez M, et al. Computer aided diagnosis of Alzheimer’s disease using component based SVM [J]. Applied Soft Computing, 2011,11(2): 2376-2382. [16] Kim E J, Cho S S, Jeong Y, et al. Glucose metabolism in early onset versus late onset Alzheimer’s disease: An SPM analysis of 120 patients [J]. Brain,2005, 128(8): 1790-1801. [17] Kono A K, Ishii K, Sofue K, et al. Fully automatic differential diagnosis system for dementia with Lewy bodies and Alzheimer’s disease using FDG-PET and 3D-SSP [J]. European Journal of Nuclear Medicine and Molecular Imaging, 2007, 34(9): 1490-1497. [18] Reiman E, Chen K, Liu X, et al. Fibrillar amyloid-β burden in cognitively normal people at 3 levels of genetic risk for Alzhimer’s disease [J]. Proceedings of the National Academy of Sciences, 2009, 106: 6820-6825. [19] Noushath S, Hemantha K G, Shivakumara P.(2D)2 LDA: An efficient approach for face recognition[J]. Pattern Recognition, 2006, 39(7): 1396-1400. [20] Zoua H, Hastiea T, Tibshirania R, et al. Sparse principal component analysis [J]. Journal of Computational and Graphical Statistics, 2006, 15(2): 265-286. [21] Wang L. Support vector machines: Theory and applications[M]. Berlin: Springer, 2005. [22] Lopez M, Ramirez J, Gorriz J, et al. Automatic tool for Alzheimer’s disease diagnosis using PCA and Bayesian classification rules [J]. Electronics Letters,2009, 45(8): 389-391. [23] Ramirez J, Gorriz J, Segovia F, et al. Computer aided diagnosis system for the Alzheimer’s disease based on partial least squares and random forest SPECT image classification [J]. Neuroscience Letters,2010, 472(2): 99-103. |
[1] | DING Shifeng, ZHOU Li, WANG Zhengrong, TSUPRIK Vladimir G.. Prediction Method of Ice Resistance and Propulsion Power for Polar Ships[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 739-745. |
[2] | WANG Shengsheng, ZHANG Hang, CHEN Juan . Dual Sum-Product Networks Autoencoder for Multi-Label Classification[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 665-673. |
[3] | ZHU Tao (朱涛), CHENG Chunling (程春玲). Joint CTC-Attention End-to-End Speech Recognition with a Triangle Recurrent Neural Network Encoder[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(1): 70-75. |
[4] | WANG Yinglin (王英林), WANG Ming (王明). Fine-Grained Opinion Extraction from Chinese Car Reviews with an Integrated Strategy[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(5): 620-626. |
[5] | ZHANG Yanghao (张洋豪), ZENG Shaoning (曾少宁), ZENG Wei (曾威), GOU Jianping (苟建平). GNN-CRC: Discriminative Collaborative Representation-Based Classification via Gabor Wavelet Transformation and Nearest Neighbor [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(5): 657-665. |
[6] | YE Feiyue (叶飞跃), MA Yixing (马祎星). Research on Web Page Classification Method Based on Query Log[J]. sa, 2018, 23(3): 404-. |
[7] | HU Jing* (胡静), LUO Yiyuan (罗宜元). Integration of Learning Algorithm on Fuzzy Min-Max Neural Networks[J]. 上海交通大学学报(英文版), 2017, 22(6): 733-741. |
[8] | SONG Jie (宋杰), XIAO Liang* (肖亮), LIAN Zhichao (练智超). Robust Segmentation, Shape Fitting and Morphology Computation of High-Throughput Cell Nuclei[J]. 上海交通大学学报(英文版), 2017, 22(2): 180-187. |
[9] | LONG Haixia (龙海霞), ZHUO Li* (卓 力), QU Panling (屈盼玲), ZHANG Jing (张 菁). Weak Correlation Dictionary Construction Method for Sparse Coding[J]. 上海交通大学学报(英文版), 2017, 22(1): 77-081. |
[10] | WANG Yukui1,2* (王余奎), HUANG Zhijie1 (黄之杰), ZHAO Xucheng1 (赵徐成), ZHU Yi1 (朱 毅), W. A Novel De-noising Method Based on Discrete Cosine Transform and Its Application in the Fault Feature Extraction of Hydraulic Pump[J]. 上海交通大学学报(英文版), 2016, 21(3): 297-306. |
[11] | LI Hong-kun1 (李宏坤), ZHANG Zhi-xin2* (张志新), LI Xiu-gang3 (李秀刚), REN Yuan-jie1 (任远. Reliability Prediction Method Based on State Space Model for Rolling Element Bearing[J]. 上海交通大学学报(英文版), 2015, 20(3): 317-321. |
[12] | WEN Cheng-yu* (文成玉), DONG Liang (董良), JIN Xin (金欣). Feature Extraction of Bearing Vibration Signals Using Second Generation Wavelet and Spline-Based Local Mean Decomposition[J]. 上海交通大学学报(英文版), 2015, 20(1): 56-60. |
[13] | CHEN Chia-mei1 (陈嘉玫), LAI Gu-hsin2* (赖谷鑫). Research on Classification of Malware Source Code[J]. 上海交通大学学报(英文版), 2014, 19(4): 425-430. |
[14] | ZHANG Zhi-fen* (张志芬), ZHONG Ji-yong (钟继勇), CHEN Yu-xi (陈玉喜), CHEN Shan-ben (陈善本). Feature Extraction and Modeling of Welding Quality Monitoring in Pulsed Gas Touch Argon Welding Based on Arc Voltage Signal[J]. 上海交通大学学报(英文版), 2014, 19(1): 11-16. |
[15] | HUANG Shu-ling* (黄蜀玲), PANG Yong-jie (庞永杰), WANG Bo (王 博), WAN Lei (万 磊). Wavelet Moment Invariants Extraction of Underwater Laser Vision Image[J]. 上海交通大学学报(英文版), 2013, 18(6): 712-718. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||