[1] |
CHOI A, DARWICHE A. On relaxing determinism in arithmetic circuits [C]//34th International Conference on Machine Learning. Sydney, Australia: IMLS, 2017:825-833.
|
[2] |
POON H, DOMINGOS P. Sum-product networks: A new deep architecture [C]//IEEE International Conference on Computer Vision Workshops. Barcelona,Spain: IEEE, 2011: 689-690.
|
[3] |
CHENG W C, KOK S, PHAM H V, et al.Language modeling with sum-product networks [C]//International Annual Conference of the International Speech Communication Association. Singapore:ISCA, 2014: 2098-2102.
|
[4] |
AMER M R, TODOROVIC S. Sum product networks for activity recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(4):800-813.
|
[5] |
VERGARI A, PEHARZ R, DI MAURO N, et al. Sumproduct autoencoding: Encoding and decoding representations using sum-product networks [C]//32nd Conference on Artificial Intelligence. New Orleans,USA: AAAI, 2018: 4163-4170.
|
[6] |
XIA Y, HE D, QIN T, et al. Dual learning for machine translation [C]//30th Conference on Neural Information Processing Systems. Barcelona, Spain: MIT Press,2016: 820-828.
|
[7] |
YI Z, ZHANG H, TAN P, et al. DualGAN: Unsupervised dual learning for image-to-image translation [C]//IEEE International Conference on Computer Vision.Venice, Italy: IEEE, 2017: 2868-2876.
|
[8] |
GENS R, DOMINGOS P. Learning the structure of sum-product networks [C]//30th International Conference on Machine Learning. Atlanda, USA: IMLS, 2013:873-880.
|
[9] |
ZHAO H, POUPART P, GORDON G. A unified approach for learning the parameters of sum-product networks[C]//30th Annual Conference on Neural Information Processing Systems. Barcelona, Spain: MIT Press, 2016: 433-441.
|
[10] |
RASHWAN A, ZHAO H, POUPART P. Online and distributed Bayesian moment matching for parameter learning in sum-product networks [C]//19th International Conference on Artificial Intelligence and Statistics.Cadiz, Spain: Committee of AISTATS, 2016:1469-1477.
|
[11] |
ZHAO H, ADEL T, GORDON G, et al. Collapsed variational inference for sum-product networks [C]//33rd International Conference on Machine Learning. New York, USA: IMLS, 2016: 1310-1318.
|
[12] |
ADEL T, BALDUZZI D, GHODSI A. Learning the structure of sum-product networks via an SVD-based algorithm [C]//31st Conference on Uncertainty in Artificial Intelligence. Amsterdam, the Netherlands:AUAI, 2015: 32-41.
|
[13] |
MELIBARI M, POUPART P, DOSHI P, et al. Dynamic sum product networks for tractable inference on sequence data [C]//8th Conference on Probabilistic Graphical Models. Lugano, Switzerland: IDSIA, 2016:345-355.
|
[14] |
BOYD S, VANDENBERGHE L. Convex optimization [M]. Cambridge, UK: Cambridge University Press,2004.
|
[15] |
VERGARI A, DI MAURO N, ESPOSITO F. Simplifying,regularizing and strengthening sum-product network structure learning [M]//Machine learning and knowledge discovery in databases. Cham: Springer,2015: 343-358.
|
[16] |
KINGMA D, BA J. ADAM: A method for stochastic optimization [C]//3rd International Conference on Learning Representation. San Diego, USA: Committee of ICLR, 2015: 1-15.
|
[17] |
BARTLETT P L, MENDELSON S. Rademacher and Gaussian complexities: Risk bounds and structural results [J]. Journal of Machine Learning Research, 2003,3: 463-482.
|
[18] |
FINLEY T, JOACHIMS T. Training structural SVMs when exact inference is intractable [C]//Proceedings of the 25th International Conference on Machine Learning.Helsinki, Finland: IMLS, 2008: 304-311.
|
[19] |
GERMAIN M, GREGOR K, MURRAY I, et al.MADE: Masked autoencoder for distribution estimation [C]//32nd International Conference on Machine Learning. Lille, France: IMLS, 2015: 881-889.
|
[20] |
WICKER J, TYUKIN A, KRAMER S. A nonlinear label compression and transformation method for multilabel classification using autoencoders [M]//Advances in knowledge discovery and data mining. Cham: Spinger,2016: 328-340.
|
[21] |
RIFAI S, VINCENT P, MULLER X, et al. Contractive auto-encoders: Explicit invariance during feature extraction [C]//28th International Conference on Machine Learning. Bellevue, USA: IMLS, 2011: 833-840.
|
[22] |
VINCENT P, LAROCHELLE H, LAJOIE I, et al.Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion [J]. Journal of Machine Learning Research,2010, 11: 3371-3408.
|
[23] |
DI MAURO N, VERGARI A, ESPOSITO F. Multilabel classification with cutset networks [C]//8th Conference on Probabilistic Graphical Models. Lugano,Switzerland: IDSIA, 2016: 147-158.
|
[24] |
DEMBCZY′NSKI K,WAEGEMAN W, CHENGWW, et al. On label dependence and loss minimization in multi-label classification [J]. Machine Learning, 2012,88: 5-45.
|