上海交通大学学报(英文版) ›› 2013, Vol. 18 ›› Issue (5): 590-597.doi: 10.1007/s12204-011-1202-8
ZHAO Wen-hua (赵文华), YANG Jian-min* (杨建民), HU Zhi-qiang (胡志强), WEI Yue-feng (魏跃峰)
出版日期:
2013-10-31
发布日期:
2013-12-05
通讯作者:
YANG Jian-min(杨建民)
E-mail:jmyang@sjtu.edu.cn
ZHAO Wen-hua (赵文华), YANG Jian-min* (杨建民), HU Zhi-qiang (胡志强), WEI Yue-feng (魏跃峰)
Online:
2013-10-31
Published:
2013-12-05
Contact:
YANG Jian-min(杨建民)
E-mail:jmyang@sjtu.edu.cn
摘要: Motion responses of the floating liquefied natural gas (FLNG) hull and the mooring loads in a 100- year return environmental condition are predicted with the help of the well known coupled dynamic analysis code DeepC. A ship-shaped turret-moored FLNG moored by 4×3 chain-polyester-chain lines in 1.5 km depth of water is studied. Two types of turrets such as internal and external turrets, resulting from different locations of the turrets, are adopted respectively in the numerical simulations. Motion responses of the FLNG hull and forces of the mooring lines obtained from the internal turret case and external turret case are compared with each other. Significant differences are obtained. Statistic analysis is also used to analyze the comparison results, and effects of the turret location on the FLNG hydrodynamic characteristics are summed up. The conclusion regarding the hydrodynamic differences between internal and external turret-moored FLNG systems would provide help for design of the FLNG system.
中图分类号:
ZHAO Wen-hua (赵文华), YANG Jian-min* (杨建民), HU Zhi-qiang (胡志强), WEI Yue-feng (魏跃峰). Numerical Investigation on the Hydrodynamic Difference Between Internal and External Turret-Moored FLNG[J]. 上海交通大学学报(英文版), 2013, 18(5): 590-597.
ZHAO Wen-hua (赵文华), YANG Jian-min* (杨建民), HU Zhi-qiang (胡志强), WEI Yue-feng (魏跃峰). Numerical Investigation on the Hydrodynamic Difference Between Internal and External Turret-Moored FLNG[J]. Journal of shanghai Jiaotong University (Science), 2013, 18(5): 590-597.
[1] Kim J W, Jim O S, Atle S, et al. Global performance and sloshing analysis of a new deep-draft semisubmersible LNG FPSO [C]// Proc 27th International Conference on Offshore Mechanics and Arctic Engineering.Estoril, Portugal: ASME, 2008: 881-889. [2] Mravak Z, Lauzon J D, Chung Y S, et al. Strength assessment of membrane LNG tank structure based on direct calculation of structural response [C]// Proc 28th International Conference on Offshore Mechanics and Arctic Engineering. Hawaii, USA: ASME, 2009: 767-774. [3] Graczyk M, Moan T. Structural response to sloshing excitation in membrane LNG tank [J]. Journal of Offshore Mechanics and Arctic Engineering, 2011, 133(2): 103-111. [4] White J, Longley H. FLNG technology shows promise for stranded gas fields [J]. Offshore, 2009, 69(11): 78-79. [5] Wichers J EW. A simulation model for a single point moored tanker [D]. Delft, the Netherlands: Delft University of Technology, 1988. [6] Sphaier S H, Fernandes A C, Correa S H. Maneuvering model for the FPSO horizontal plane behavior [C]// Proc 20th International Offshore and Polar Engineering Conference. Seattle, USA: ISOPE, 2000:334-337. [7] Lee D H, Choi H S. A dynamic analysis of FPSOshuttle tanker system [C]// Proc 20th International Offshore and Polar Engineering Conference. Seattle, USA: ISOPE, 2000: 302-307. [8] Munipalli J, Pistani F, Thiagarajan K P, et al. Weathervaning instabilities of a FPSO in regular waves and consequence on response amplitude operators [C]// Proc 26th International Conference on Offshore Mechanics and Arctic Engineering. San Diego, USA: ASME, 2007: 405-412. [9] Lee S J. The effects of LNG-sloshing on the global responses of LNG-carriers [D]. Texas, USA: Texax A&M University, 2008. [10] Salvesen N, Tuck E O, Faltinsen O M. Ship motions and sea loads [J]. Transcations of the Society of Naval Architects and Marine Engineers, 1970, 78, 250-287. [11] Luo Y, Baudic S. Predicting FPSO response using model test and numerical analysis [C]// Proc 13th International Offshore and Polar Engineering Conference. Hawaii, USA: ISOPE, 2003: 167-174. [12] Moriskita H M, Junior J R D S. Dynamic behavior of a DICAS FPSO and shuttle vessel under the action of wind, current and waves [C]// Proc 12nd International Offshore and Polar Engineering Conference. Kitakyushu, Japan: ISOPE, 2002: 142-150. [13] Garrett D L. Dynamic analysis of slender rods [J]. Journal of Energy Resources Technology, 1982, 104(4), 302-307. [14] Riarald O, Elizabeth P. Riflex theory manual [R]. Tronheim, Norway: Det Norske Veritas, 2005. [15] Kannah T R, Natarajan R. Effect of turret location on the dynamic behaviour of an internal turret moored FPSO system [J]. Journal of Naval Architecture and Marine Engineering, 2006, 3(1): 23-37. |
[1] | WEN Xiaofei, ZHOU Ruiping, YUAN Qiang, LEI Junsong . Coupling Mathematical Model of Marine Propulsion Shafting in Steady Operating State[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(4): 463-469. |
[2] | LI Han, PAN Guang, HUANG Qiaogao, SHI Yao. Numerical Prediction of the Pumpjet Propulsor Tip Clearance Vortex Cavitation in Uniform Flow[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(3): 352-364. |
[3] | PANG Guoliang (庞国良), CHEN Chaohe* (陈超核), SHEN Yijun (沈义俊), LIU Fuyong (刘夫永). Comparison Between Different Finite Element Analyses of Unbonded Flexible Pipe via Different Modeling Patterns[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(3): 357-363. |
[4] | JIN Xudong (金旭东), Lü Tian (吕田), YU Guoyao (余国瑶), LIU Jiawei (刘佳伟), HUANG Xiaoyu. Design and Combustion Characteristic Analysis of Free Piston Stirling Engine External Combustion System[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 50-55. |
[5] | ZHAO Peipei (赵培培), WANG Lipo* (王利坡). Revised Three-Dimensional Navier-Stokes Characteristic Boundary Conditions for Intense Reactive Turbulence[J]. sa, 2018, 23(1): 190-201. |
[6] | XIAO Xiao (肖潇), ZHANG Yangqing (张扬清), LI Mingguang* (李明广), WANG Jianhua (王建华). Responses of the Strata and Supporting System to Dewatering in Deep Excavations[J]. 上海交通大学学报(英文版), 2017, 22(6): 705-711. |
[7] | ZHEN Lianga (甑亮), CHEN Jinjiana* (陈锦剑), . Effect of Orthogonal Stiffeners on the Stability of Axially Compressed Steel Jacking Pipe[J]. 上海交通大学学报(英文版), 2017, 22(5): 536-540. |
[8] | WANG Huaming1,3 (王化明), SHENG Xue1 (盛学), WANG Shilai2* (王世来), CHEN Lin2 (陈林),YUAN. Numerical Study on Water Depth Effects on Hydrodynamic Forces Acting on Berthing Ships[J]. 上海交通大学学报(英文版), 2017, 22(2): 198-205. |
[9] | 宋金龙,赵亦希,于忠奇,孔庆帅. 铝合金封头旋压成形变厚度毛坯设计方法[J]. 上海交通大学学报(自然版), 2017, 51(11): 1304-1311. |
[10] | SUI Da-shan*(隋大山), GAO Liang (高 亮), CUI Zhen-shan (崔振山). Microstructure Evolution of Different Forging Processes for 12%Cr Steel During Hot Deformation[J]. 上海交通大学学报(英文版), 2015, 20(5): 606-611. |
[11] | NIU Fu-jun1,3 (牛富俊), SUN Hong2* (孙 红), GE Xiu-run2 (葛修润), ZHANG Jin-zhao3 (章金钊). Temperature Adjustment Mechanism of Composite Embankment with Perforated Ventilation Pipe and Blocky Stone[J]. 上海交通大学学报(英文版), 2013, 18(6): 729-732. |
[12] | LI Ke1,2* (李 科), WANG Ying-yi3 (王颖轶), HUANG Xing-chun2,3 (黄醒春). Regression Analysis of Initial Stress Field Around Faults Based on Fault Throw by Displacement Discontinuity Method[J]. 上海交通大学学报(英文版), 2013, 18(4): 474-478. |
[13] | FENG Pei-yuana* (封培元), MA Ninga,b (马宁), GU Xie-chonga,b (顾解仲). Application of Method of Fundamental Solutions in Solving Potential Flow Problems for Ship Motion Prediction[J]. 上海交通大学学报(英文版), 2013, 18(2): 153-158. |
[14] | ZENG Zhuo-xiong (曾卓雄), CHEN Chao-jie (陈超杰). Fluctuation Velocity Correlation Closure Model for Dense Gas-Particle Turbulent Flow[J]. 上海交通大学学报(英文版), 2012, 17(4): 447-451. |
[15] | YANG Yong (杨勇), MA Jie (马捷), TANG Wen-yong (唐文勇) CHE Chi-dong (车驰东), ZHANG Gui-c. Shafting Alignment Based on Hydrodynamics Simulation Under Larger Rudder Corner Conditions[J]. 上海交通大学学报(英文版), 2012, 17(4): 427-435. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 296
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 727
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||