J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (4): 768-777.doi: 10.1007/s12204-024-2764-6
收稿日期:
2023-08-30
接受日期:
2023-11-10
发布日期:
2025-07-31
李家宁1,宗志鹏2,周韬2,张江2,马海腾1
Received:
2023-08-30
Accepted:
2023-11-10
Published:
2025-07-31
摘要: 门静脉狭窄是儿童肝移植术后常见的并发症之一。准确的血流动力学评估对肝移植术后的并发症风险预测至关重要。为了预测肝移植术后门静脉血栓的形成位置,使用商业软件MIMICS从CT图像来重建单出口和三出口血管模型并采用9.4 T磁共振成像扫描仪测量速度场。基于磁共振测速仪的实验数据,对计算流体动力学结果进行了验证,研究两个门静脉模型的壁面压力和剪应力。仿真结果可用于门静脉肝移植术后早期血栓形成的临床预测。
中图分类号:
. 基于9.4 T磁共振测速的门静脉血流动力学与数值模拟[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 768-777.
Li Jianing, Zong Zhipeng, Zhou Tao, Zhang Jiang, Ma Haiteng. Hemodynamics in Portal Venous Based on 9.4T Magnetic Resonance Velocimetry and Numerical Simulations[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 768-777.
[1] SAMBOMMATSU Y, SHIMATA K, IBUKI S, et al. Portal vein complications after adult living donor liver transplantation: Time of onset and deformity patterns affect long-term outcomes [J]. Liver Transplantation, 2021, 27(6): 854-865. [2] GUO C, HU L W, ZHONG Y M, et al. Computational fluid dynamics analysis of portal vein blood flow characteristics in children undergoing liver transplantation [C]//2022 15th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics. Beijing: IEEE, 2022: 1-6. [3] GRANDE GUTIéRREZ N, SHANKAR K N, SINNO T, et al. Thrombosis and hemodynamics: External and intrathrombus gradients [J]. Current Opinion in Biomedical Engineering, 2021, 19: 100316. [4] KARINO T, GOLDSMITH H L. Flow behaviour of blood cells and rigid spheres in an annular vortex [J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1977, 279(967): 413-445. [5] GARIN G, ABE J I, MOHAN A, et al. Flow antagonizes TNF-α signaling in endothelial cells by inhibiting caspase-dependent PKCζ processing [J]. Circulation Research, 2007, 101(1): 97-105. [6] KOLAWOLE F O, PEIRLINCK M, CORK T E, et al. Validating MRI-derived myocardial stiffness estimates using in vitro synthetic heart models [J]. Annals of Biomedical Engineering, 2023, 51(7): 1574-1587. [7] LAN I S, LIU J, YANG W G, et al. Validation of the reduced unified continuum formulation against in vitro 4D-flow MRI [J]. Annals of Biomedical Engineering, 2023, 51(2): 377-393. [8] LIU Y Q, WU H, LI M, et al. Hemodynamic analysis of coronary bifurcation lesion of single stent implantation [J]. Beijing Biomedical Engineering, 2019, 38(6): 583-589 (in Chinese). [9] TANG J, CHEN G, MAO C, et al. Computational fluid dynamics analysis of hemorrhagic transformation after reperfusion therapy in acute ischemic stroke patients with middle cerebral artery occlusion [J]. Chinese Journal of Magnetic Resonance Imaging, 2020, 11(3): 161-165 (in Chinese). [10] ZIMMERMANN J, LOECHER M, KOLAWOLE F O, et al. On the impact of vessel wall stiffness on quantitative flow dynamics in a synthetic model of the thoracic aorta [J]. Scientific Reports, 2021, 11: 6703. [11] JOHN K, JAHANGIR S, GAWANDALKAR U, et al. Magnetic resonance velocimetry in high-speed turbulent flows: Sources of measurement errors and a new approach for higher accuracy [J]. Experiments in Fluids, 2020, 61(2): 27. [12] RICKE A, SADEGHI M, DREHER W. Magnetic Resonance Velocimetry for porous media: Sources and reduction of measurement errors for improved accuracy [J]. Experiments in Fluids, 2023, 64(7): 132. [13] BOCK J, T?GER J, BIDHULT S, et al. Validation and reproducibility of cardiovascular 4D-flow MRI from two vendors using 2 × 2 parallel imaging acceleration in pulsatile flow phantom and in vivo with and without respiratory gating [J]. Acta Radiologica, 2019, 60(3): 327-337. [14] MEDERO R, FALK K, RUTKOWSKI D, et al. In vitro assessment of flow variability in an intracranial aneurysm model using 4D flow MRI and tomographic PIV [J]. Annals of Biomedical Engineering, 2020, 48(10): 2484-2493. [15] SCHMIDT S, JOHN K, KIM S J, et al. Reynolds stress tensor measurements using magnetic resonance velocimetry: Expansion of the dynamic measurement range and analysis of systematic measurement errors [J]. Experiments in Fluids, 2021, 62(6): 121. [16] HU L W, PENG Y F, SUN A M, et al. Four-dimensional flow technique in quantitative evaluation of hemodynamics after aortic coarctation [J]. Chinese Journal of Medical Imaging, 2019, 27(1): 6-10 (in Chinese). [17] KAISER A D, SCHIAVONE N K, ELKINS C J, et al. Comparison of immersed boundary simulations of heart valve hemodynamics against in vitro 4D flow MRI data [J]. Annals of Biomedical Engineering, 2023, 51(10): 2267-2288. [18] WANG K X, WANG S, XIONG M H, et al. Non-invasive assessment of hepatic venous pressure gradient (HVPG) based on MR flow imaging and computational fluid dynamics [M]//Medical image computing and computer assisted intervention – MICCAI 2021. Cham: Springer, 2021: 33-42. [19] ANNIO G, TORII R, ARIFF B, et al. Enhancing magnetic resonance imaging with computational fluid dynamics [J]. Journal of Engineering and Science in Medical Diagnostics and Therapy, 2019, 2(4): 041010. [20] ANNIO G, TORII R, DUCCI A, et al. Experimental validation of enhanced magnetic resonance imaging (EMRI) using particle image velocimetry (PIV) [J]. Annals of Biomedical Engineering, 2021, 49(12): 3481-3493. [21] ZHOU G, YAN Z, XU S, et al. Hydrodynamics [M]. 2nd ed. Beijing: Higher Education Press, 2003 (in Chinese). [22] WYMER D T, PATEL K P, BURKE W F III, et al. Phase-contrast MRI: Physics, techniques, and clinical applications [J]. RadioGraphics, 2020, 40(1): 122-140. [23] JONá?OVá A, VIMMR J. On the relevance of boundary conditions and viscosity models in blood flow simulations in patient-specific aorto-coronary bypass models [J]. International Journal for Numerical Methods in Biomedical Engineering, 2021, 37(4): e3439. [24] VENTURINI M, SALLEMI C, MARRA P, et al. Allo- and auto-percutaneous intra-portal pancreatic islet transplantation (PIPIT) for diabetes cure and prevention: The role of imaging and interventional radiology [J]. Gland Surgery, 2018, 7(2): 117-131. [25] SAMESHIMA N, YAMASHITA A, SATO S, et al. The values of wall shear stress, turbulence kinetic energy and blood pressure gradient are associated with atherosclerotic plaque erosion in rabbits [J]. Journal of Atherosclerosis and Thrombosis, 2014, 21(8): 831-838. [26] BUCK A K W, GROSZEK J J, COLVIN D C, et al. Combined in silico and in vitro approach predicts low wall shear stress regions in a hemofilter that correlate with thrombus formation in vivo [J]. ASAIO Journal, 2018, 64(2): 211-217. [27] HATHCOCK J J. Flow effects on coagulation and thrombosis [J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26(8): 1729-1737. [28] CASA L D C, DEATON D H, KU D N. Role of high shear rate in thrombosis [J]. Journal of Vascular Surgery, 2015, 61(4): 1068-1080. |
[1] | . 特发性脊柱侧后凸的动态响应[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 482-492. |
[2] | 叶鹏,富荣昌,王召耀. 不同节段的颈椎前路椎间盘切除和融合术中植入Cage-Plate或Zero-P融合器系统后相邻节段生物力学分析[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 166-174. |
[3] | 贺贵松,黄学功,李峰. 基于主被动联合驱动的助力型踝关节外骨骼机器人的协调性设计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 197-208. |
[4] | . 步幅对膝关节接触的影响[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 759-767. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||