J Shanghai Jiaotong Univ Sci ›› 2023, Vol. 28 ›› Issue (2): 280-288.doi: 10.1007/s12204-021-2388-z
• • 上一篇
曹民业,苗宏量,胡成亮,赵震
收稿日期:
2021-01-06
接受日期:
2021-04-02
出版日期:
2023-03-28
发布日期:
2023-03-21
CAO Minye (曹民业), MIAO Hongliang (苗宏量), HU Chengliang∗ (胡成亮), ZHAO Zhen (赵 震)
Received:
2021-01-06
Accepted:
2021-04-02
Online:
2023-03-28
Published:
2023-03-21
摘要: 常用的多层组合模具结构可以通过应力环产生弹性变形加强,并且模具材料可以通过均匀塑性变形得到增强。锻造过程中产生的热效应会直接影响模具的应力状态和尺寸。本文推导了组合凹模热弹塑性变形的解析解,确定了模具径向应力和周向应力与温度分布之间的关系。这些关系与模具几何参数、材料性能和工作压力直接相关。这有助于更好地理解模具的热弹塑性变形行为,设计出长寿命高精度的组合模具。
中图分类号:
曹民业, 苗宏量, 胡成亮, 赵震. 组合凹模热弹塑性变形的解析解[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(2): 280-288.
CAO Minye (曹民业), MIAO Hongliang (苗宏量), HU Chengliang∗ (胡成亮), ZHAO Zhen (赵 震). Analytical Solution of Thermo-Elastic-Plastic Deformation of the Combined Forging Die[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(2): 280-288.
[1] | QIN Y, BALENDRA R. FE simulation of the influence of die-elasticity on component dimensions in forward extrusion [J]. International Journal of Machine Tools and Manufacture, 1997, 37(2): 183-192. |
[2] | PARK Y B, LEE K H. Study on the deformation of die and product in closed die upsetting [J]. Journal of Materials Processing Technology, 2001, 118(1/2/3): 417-421. |
[3] | LEE Y, LEE J, ISHIKAWA T. Analysis of the elastic characteristics at forging die for the cold forged dimensional accuracy [J]. Journal of Materials Processing Technology, 2002, 130/131: 532-539. |
[4] | ISHIKAWA T, YUKAWA N, YOSHIDA Y, et al. Prediction of dimensional difference of product from tool in cold backward extrusion [J]. CIRP Annals-Manufacturing Technology, 2000, 49(1): 169-172. |
[5] | QIN Y, BALENDRA R, CHODNIKIEWICZ K. Analysis of temperature and component form-error variation with the manufacturing cycle during the forward extrusion of components [J]. Journal of Materials Processing Technology, 2004, 145(2): 171-179. |
[6] | LONG H, BALENDRA R. FE simulation of the influence of thermal and elastic effects on the accuracy of cold-extruded components [J]. Journal of Materials Processing Technology, 1998, 84(1/2/3): 247-260. |
[7] | HU C L, YANG F Y, ZHAO Z, et al. Thermo-elastic deformation of three-layer combined die under steady-state temperature field [J]. Journal of Thermal Stresses, 2016, 39(1): 103-119. |
[8] | LI Z B, ZENG F, ZHAO Z, et al. Optimized design for a combined die with two stress rings in cold forging considering thermal-mechanical effects [J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(3): 304-314. |
[9] | HU C L, ZHAO Z, ZHI Y S, et al. Thermoelastic deformation of three-layer combined die with nonuniform temperature distribution [J]. Journal of Thermal Stresses, 2014, 37(10): 1230-1243. |
[10] | ?RTS PEDERSEN T. Numerical modelling of cyclic plasticity and fatigue damage in cold-forging tools [J]. International Journal of Mechanical Sciences, 2000, 42(4): 799-818. |
[11] | JAHED H, FARSHI B, HOSSEINI M. Fatigue life prediction of autofrettage tubes using actual material behaviour [J]. International Journal of Pressure Vessels and Piping, 2006, 83(10): 749-755. |
[12] | ZARE H R, DARIJANI H. A novel autofrettage method for strengthening and design of thick-walled cylinders [J]. Materials & Design, 2016, 105: 366-374. |
[13] | HU C L, YANG F Y, ZHAO Z, et al. An alternative design method for the double-layer combined die using autofrettage theory [J]. Mechanical Sciences, 2017, 8(2): 267-276. |
[14] | GRONOSTAJSKI Z, HAWRYLUK M. The main aspects of precision forging [J]. Archives of Civil and Mechanical Engineering, 2008, 8(2): 39-55. |
[15] | HUR K D, CHOI Y, YEO H T. Design for stiffness reinforcement in backward extrusion die [J]. Journal of Materials Processing Technology, 2002, 130/131: 411-415. |
[16] | LONG H. Quantitative evaluation of dimensional errors of formed components in cold backward cup extrusion [J]. Journal of Materials Processing Technology, 2006, 177(1/2/3): 591-595. |
[17] | ISHIKAWA T, ISHIGURO T, YUKAWA N, et al. Control of thermal contraction of aluminum alloy for precision cold forging [J]. CIRP Annals-Manufacturing Technology, 2014, 63(1): 289-292. |
[1] | 徐箭, 余青芳, 廖思阳, 柯德平, 孙元章. 考虑生产安全的工业园区联络线功率平滑策略[J]. 上海交通大学学报, 2024, 58(6): 941-953. |
[2] | 冯漾漾, 丁浩亮, 胡平山, 严波. 注塑模稳态温度场的有限体积法模拟[J]. 上海交通大学学报, 2024, 58(4): 461-467. |
[3] | 范博超, 张刚, 齐江龙, 杜云祥. 燃烧室声腔模态特性影响因素研究[J]. 空天防御, 2024, 7(3): 72-78. |
[4] | 张国冻, 杨 森, 于成龙, 邓冠华, 钱 程. 涌流抑制器在海洋平台电力系统的应用[J]. 海洋工程装备与技术, 2024, 11(2): 63-66. |
[5] | 洪蕾1,肖皓1,叶佳2,马国红1. 径向超声波辅助MIG焊电弧的数值模拟[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 330-338. |
[6] | 赵 威, 李少鹏, 曹志兴, 刘 锐, 邱 爽. 油田终端原油处理系统异常分析及处理[J]. 海洋工程装备与技术, 2024, 11(2): 67-71. |
[7] | 陈尔东, 高孜航, 王坤东, 雷华明. 一种分区温控的实时荧光PCR快速热循环系统设计[J]. 上海交通大学学报, 2023, 57(9): 1196-1202. |
[8] | 程显达, 郑皓冉, 杨学森, 董威. 高速飞行器燃油瞬态温度预测的修正热网络法[J]. 上海交通大学学报, 2023, 57(6): 728-738. |
[9] | 王雪维,王逸飞,张爱丽. 温控射频消融温度场快速计算方法的研究[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 411-. |
[10] | 韩云峰 岳元龙 魏娟 左信 孙瀚轩. 水下压力温度一体变送器技术现状 [J]. 海洋工程装备与技术, 2023, 10(3): 90-98. |
[11] | 杜立彬, 崔永超, 刘 杰, 张晓波. 投弃式温盐深测量仪发展概述[J]. 海洋工程装备与技术, 2023, 10(3): 33-40. |
[12] | 杨剑, , 徐明照, 陆征. 基于图解法和Alpha shape算法设计带啮合间隙的双螺杆压缩机转子齿形[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(2): 243-254. |
[13] | 付 强 , 张 理 , 毛良杰, 曾 松 , 黄世苗. 海洋温差能发电冷水管温度场分布研究[J]. 海洋工程装备与技术, 2022, 9(2): 7-13. |
[14] | 梁婉琪. 植物是如何感受环境温度变化的?[J]. 上海交通大学学报, 2021, 55(Sup.1): 26-27. |
[15] | 姜余, 陈自强. 可变环境温度下锂离子电池平均温度估计[J]. 上海交通大学学报, 2021, 55(7): 781-790. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||