J Shanghai Jiaotong Univ Sci ›› 2023, Vol. 28 ›› Issue (2): 255-263.doi: 10.1007/s12204-021-2389-y
祝 楷1,2,3,熊柏青1,3,闫宏伟1,2,3,张永安1,2,3,李志辉1,3,李锡武1,2,3,刘红伟1,2,3,温 凯1,2,3,闫丽珍1,2,3
收稿日期:
2021-03-08
接受日期:
2021-05-14
出版日期:
2023-03-28
发布日期:
2023-03-21
祝 楷1,2,3,熊柏青1,3,闫宏伟1,2,3,张永安1,2,3,李志辉1,3,李锡武1,2,3,刘红伟1,2,3,温 凯1,2,3,闫丽珍1,2,3#br#
Received:
2021-03-08
Accepted:
2021-05-14
Online:
2023-03-28
Published:
2023-03-21
摘要: 固溶-淬火热处理可有效抑制合金基体中过饱和固溶体的分解,是生产具有理想性能的大规格沉淀强化型铝合金厚板的重要工艺步骤。然而厚板淬火过程中,因冷却速度不均匀而产生的巨大温度梯度通常会导致厚板中内部形成严重不均匀分布的残余应力。辊底式淬火炉的出现确保了大规格铝合金厚板连续、整体的固溶-淬火处理。大规格铝合金厚板固溶-淬火处理过程中,淬火炉内部辊道的传送速度是影响厚板内部残余应力分布的一个关键工艺参数,但其在以往的文献中较少涉及。因此,本研究通过考虑辊道的传送速度并采用热力耦合有限元模拟的方法开展了大规格铝合金厚板淬火过程中的温度变化和残余应力分布预测。模拟过程中选用了四种不同的辊道传送速度。结果表明,大规格铝合金厚板淬火处理过程中内部温度演变及其所诱发的残余应力分布受辊道传送速度的影响。较慢的辊道传送速度有助于获得残余应力分布相对均匀的大规格厚板。
中图分类号:
祝 楷, 熊柏青, 闫宏伟, 张永安, 李志辉, 李锡武, 刘红伟, 温 凯, 闫丽珍, . 辊道传送速度对大规格铝合金厚板应力分布及演变影响的数值模拟研究[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(2): 255-263.
ZHU Kai, (祝 楷), XIONG Baiqing, ∗ (熊柏青), YAN Hongwei, (闫宏伟), ZHANG Yongan, (张永安), LI Zhihui, (李志辉), LI Xiwu, (李锡武), LIU Hongwei, (刘红伟), WEN Kai, (温 凯), YAN Lizhen, (闫丽珍). Numerical Simulation on the Effect of Conveyor Velocity of the Roller Table on Stress Distribution and Evolution in Large Aluminum Alloy Thick Plates[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(2): 255-263.
[1] | STARKE JR E A, STALEY J T. Application of modern aluminum alloys to aircraft [J]. Progress in Aerospace Sciences, 1996, 32(2): 131-172. |
[2] | IMMARIGEON J P, HOLT R T, KOUL A K, et al. Lightweight materials for aircraft applications [J]. Materials Characterization, 1995, 35(1): 41-67. |
[3] | DURSUN T, SOUTIS C. Recent developments in advanced aircraft aluminium alloys [J]. Materials & Design (1980-2015), 2014, 56: 862-871. |
[4] | MOLDENHAUER S, VAN DER LUGT J, HOOGLAND H, et al. Recent improvement in high strength thick AA7050-plate [J]. Materials Science Forum, 2000, 331/332/333/334/335/336/337: 1101-1106. |
[5] | CHOBAUT N, CARRON D, ARSE`NE S, et al. Quench induced residual stress prediction in heat treatable 7xxx aluminium alloy thick plates using Gleeble interrupted quench tests [J]. Journal of Materials Processing Technology, 2015, 222: 373-380. |
[6] | TANNER D A, ROBINSON J S. Residual stress prediction and determination in 7010 aluminum alloy forgings [J]. Experimental Mechanics, 2000, 40(1): 75-82. |
[7] | ROBINSON J S, REDINGTON W. The influence of alloy composition on residual stresses in heat treated aluminium alloys [J]. Materials Characterization, 2015, 105: 47-55. |
[8] | KOC? M, CULP J, ALTAN T. Prediction of residual stresses in quenched aluminum blocks and their reduction through cold working processes [J]. Journal of Materials Processing Technology, 2006, 174(1/2/3): 342-354. |
[9] | DOLAN G P, ROBINSON J S. Residual stress reduction in 7175-T73, 6061-T6 and 2017A-T4 aluminium alloys using quench factor analysis [J]. Journal of Materials Processing Technology, 2004, 153/154: 346-351. |
[10] | RASOULI YAZDI S, RETRAINT D, LU J. Study of through-thickness residual stress by numerical and experimental techniques [J]. The Journal of Strain Analysis for Engineering Design, 1998, 33(6): 449-458. |
[11] | FERNANDES F A P, CHRISTIANSEN T L, WINTHER G, et al. On the determination of stress profiles in expanded austenite by grazing incidence X-ray diffraction and successive layer removal [J]. Acta Materialia, 2015, 94: 271-280. |
[12] | MAHMOODI M, SEDIGHI M, TANNER D A. Investigation of through thickness residual stress distribution in equal channel angular rolled Al 5083 alloy by layer removal technique and X-ray diffraction [J]. Materials & Design, 2012, 40: 516-520. |
[13] | CHOBAUT N, REPPER J, PIRLING T, et al. Residual stress analysis in AA7449 as-quenched thick plates using neutrons and Fe modelling [C]//Proceedings of the 13th International Conference on Aluminum Alloys (ICAA13 ). Cham: Springer, 2012: 285-291. |
[14] | JEANMART P, BOUVAIST J. Finite element calculation and measurement of thermal stresses in quenched plates of high-strength 7075 aluminium alloy [J]. Materials Science and Technology, 1985, 1(10): 765-769. |
[15] | LI H Y, ZHANG Y D, ZHANG H W. Finite element analysis for comprehensive residual stress of 7075 aluminum alloy thick plate [J]. Advanced Materials Research, 2010, 154/155: 1255-1261. |
[16] | GONG H, WU Y X, YANG Z P, et al. Analysis of quenching and stretching processes of aluminum alloy thick plates [J]. Advanced Materials Research, 2014, 996: 532-537. |
[17] | LI Y N, ZHANG Y A, LI X W, et al. Quenching residual stress distributions in aluminum alloy plates with different dimensions [J]. Rare Metals, 2019, 38(11): 1051-1061. |
[18] | DONG H Y, KE Y L, SUN J, et al. Finite element method simulation for residual stress in quenched aluminum alloy thick-plate and its effect on machining distortion [J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(4): 429-432 (in Chinese). |
[19] | S?IMS?IR C, GU¨ R C H. A FEM based framework for simulation of thermal treatments: Application to steel quenching [J]. Computational Materials Science, 2008, 44(2): 588-600. |
[20] | CAO H L, LI X W, LI Y N, et al. Numerical simulation of quenching and pre-stretching residual stress in 7085 aluminum alloy plate [J]. Materials Science Forum, 2016, 852: 211-217. |
[21] | CAO H L. Measurement and numerical simulation of quenching residual stress in 7055 aluminum alloy thick plate [D]. Beijing: General Research Institute for Nonferrous Metals, 2016 (in Chinese). |
[22] | HALL D D, MUDAWAR I. Optimization of quench history of aluminum parts for superior mechanical properties [J]. International Journal of Heat and Mass Transfer, 1996, 39(1): 81-95. |
[23] | ROBINSON J S, TANNER D A. The influence of aluminium alloy quench sensitivity on the magnitude of heat treatment induced residual stress [J]. Materials Science Forum, 2006, 524/525: 305-310. |
[24] | LI Y N. Study on evolution and prediction of quenching and pre-stretching residual stress of 7055 aluminum alloy thick plate [D]. Beijing: General Research Institute for Nonferrous Metals, 2017 (in Chinese). |
[1] | 翟旭茂, 田新伟, 张传斌, 李玉娟, 刘硕, 崔毅. 柴油机活塞缸套摩擦副润滑和多柔体动力学耦合特性[J]. 上海交通大学学报, 2024, 58(3): 324-332. |
[2] | 徐蓉霞, 高建雄, 朱鹏年, 吴志峯. 纤维增强复合材料层压板的疲劳寿命预测方法[J]. 上海交通大学学报, 2024, 58(3): 400-410. |
[3] | 王贤锋, 邹凡, 刘畅, 安庆龙, 陈明. 锪窝圆角半径对CFRP/Al机械连接结构力学性能影响[J]. 上海交通大学学报, 2024, 58(3): 342-351. |
[4] | 陈 祎, 姜 哲, 张锦飞, 罗高生, 王欢欢, 陈钊辉. 海底管道防护垫水下自动布放装置框架结构有限元分析研究[J]. 海洋工程装备与技术, 2024, 11(1): 82-89. |
[5] | 安涛, 林增勇, 柏健. 自升式海洋平台拖航阻力计算分析[J]. 上海交通大学学报, 2023, 57(S1): 108-113. |
[6] | 陈尔东, 高孜航, 王坤东, 雷华明. 一种分区温控的实时荧光PCR快速热循环系统设计[J]. 上海交通大学学报, 2023, 57(9): 1196-1202. |
[7] | 丁悦婕, 王一文, 王武荣, 韦习成, 赵杨洋. 可变闭合力对DP1180钢冲压成形的回弹控制研究[J]. 上海交通大学学报, 2023, 57(8): 1096-1104. |
[8] | 王银龙, 李钊, 李子然, 汪洋. 未硫化橡胶黏弹塑性本构模型及有限元实现[J]. 上海交通大学学报, 2023, 57(8): 1086-1095. |
[9] | 许苑晶, 高海峰, 吴云成, 柳毅浩, 张子砚, 黄承兰, 王赞博, 刘同有, 王彩萍, 缪伟强, 王金武. 定制式增材制造膝关节矫形器间室减荷效果的有限元分析[J]. 上海交通大学学报, 2023, 57(5): 560-569. |
[10] | 韩贺永1,张建茹1,潘思意1,李玉贵2,马立峰1,刘实睿3. 插装阀阀芯卡紧力特性[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 604-610. |
[11] | 张振宁1,刘强2,吕春峰3,毛义梅1,陶卫1,赵辉1. 双线圈电涡流传感器参数优化及精度提高方法研究[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 596-603. |
[12] | 黄怀州, 王海龙, 袁玉杰, 侯 涛, 史 睿, 叶茂盛. 一种包板加强T型管节点的简化算法[J]. 海洋工程装备与技术, 2023, 10(4): 64-69. |
[13] | 刘徐阳, 蔡昌儒, 赵亦希, 鞠理杨. 电磁感应矫平工艺的多物理场耦合仿真研究[J]. 上海交通大学学报, 2023, 57(3): 253-263. |
[14] | 王伟, 李巍, 赵晓磊, 李楠, 张腾月. 基于显式算法的水下连接器密封圈碰撞分析 [J]. 海洋工程装备与技术, 2023, 10(3): 138-143. |
[15] | 杨苑铎, 李洋, 刘泽光, 王凯峰, 敖三三. CF/PA6与6061铝合金的超声波自熔铆焊[J]. 上海交通大学学报, 2023, 57(2): 221-229. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||